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ABSTRACT

We study the determinants of startups’ choice of exit using novel measures of
startups’ technological characteristics constructed from patent text. We show that
startups with more potential to disrupt technological areas are 25% more likely to
exit via IPO and 19% less likely to sell-out. These results are consistent with IPOs
being favored by startups that can carve out independent market positions, avoiding
the need to share gains with an acquirer. We document an economy-wide decline
in patents’ disruptive potential between 1930 to 2010, and show that this trend
explains about 20% of the recent decline in IPOs, and 50% of the surge in sell-outs.
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I Introduction

Since the late 1990s, the number of private firms exiting via initial public offerings (IPOs)

in U.S. markets has sharply declined. At the same time, the number of exits via acquisi-

tions (i.e., sell-outs) has soared. Successful firms are nowadays more likely to sell-out to

other (public or private) companies than seek independent public listings, a phenomenon

that has recently garnered considerable attention in the media and policy circles.1 In this

paper, we study the determinants and evolution of the exit choices of U.S. startups and

show that startups developing technologies with disruptive potential are more likely to

go public and are less likely to exit by selling out. We further document that the average

disruptive potential of startups has markedly decreased in recent years and estimate that

changes in startups’ technological traits can explain 20% of the recent decline in IPOs

and 50% of the surge in sell-outs.

Our analysis of startups’ exits builds on the idea that rational entrepreneurs (and

their backers) choose the exit option that maximizes the value of their equity stake. We

conjecture that the value offered by outside buyers – dispersed investors in an IPO and

strategic buyers in a sell-out – and hence the observed exit types, depends on startups’

technological characteristics. We consider that startups’ technologies lead to successful

exits because they have the potential to either disrupt established technologies, or to

complement existing inventions through synergies. The relative attractiveness of IPOs

compared to sell-outs thus hinges on the interactions between potential buyers’ technolo-

gies and those of the startup, as well as the allocation of payoffs between parties. We

posit that technologies with disruptive versus synergistic potential differ notably along

both dimensions, and therefore trigger distinct exits.

By design, startups developing disruptive technologies offer limited synergistic value

to other parties because disruptive inventions tend to be substitutes and primarily aim

to replace existing technologies (Acemoglu, Akcigit, and Celik (2014)). In addition, the

1Various observers in the media and policy circles worry that the decline in new public listings reflects
an erosion in the ability of U.S. financial markets to spur economic growth. See for instance “The
endangered public company: The big engine that couldn’t,” The Economist (May 19, 2012) or “US stock
markets seek depth in IPO pool,” Financial Times (January 9, 2018).
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economic success of startups with disruptive potential could be achieved while remaining

independent entities, without the need for integration or strategic assistance of potential

acquirers (Bayar and Chemmanur (2011)). Such independence avoids the need to share

future payoffs with another party. Hence startups with technologies with high disruptive

potential should favor exiting via a public listing. In contrast, exiting by selling out should

be favored by startups with technologies offering significant synergies to potential buyers.

Acquisitions of synergistic technologies can improve existing processes or products, and

buyers’ resources can reduce financial constraints and foster product market success (Bena

and Li (2013)). A sell-out is thus optimal when the complementary benefits of synergies

overcome the cost of sharing future payoffs.

Testing this hypothesis, and understanding whether the recent IPO and sell-out trends

are related to technological changes, requires the ability to systematically measure the

technological characteristics of a large sample of startups. We do so by exploiting the

voluminous information about technologies contained in the text of all patents filed with

the U.S. Patent and Trademark Office (USPTO) between 1930 and 2010 (6.6 million

patents). We focus specifically on disruption in the technological space and define the

disruptive potential of a given patent as its potential to change the technological path of

other firms and eventually disrupt established markets or create new ones (Dahlin and

Behrens (2005)).2 We measure a patent’s “technological disruptive potential” (henceforth

“disruptive potential” for parsimony) based on the intensity with which its text contains

vocabulary that is new or growing fast across all contemporaneous patent applications.

For example, the use of genetics words such as “peptide”, “clone”, or “recombinant”

soared in 1995, reflecting concurrent breakthroughs in genome sequencing. Our measure

would classify patents extensively using such words in 1995 as having high disruptive

potential.3

2We strictly follow the dictionary definition of “disruption”, defined as “a break or inter-
ruption in the normal course or continuation of some activity or process”(https://www.merriam-
webster.com/dictionary/disruption) or equivalently as “a an interruption in the usual way that a system,
process, or event works” (https://dictionary.cambridge.org/dictionary/english/disruption).

3Because our goal is to estimate predictive models of startups’ exits, we measure the disruptive poten-
tial of patents using only ex ante measurable data from the text contained in all past and contemporaneous
patents. See Dahlin and Behrens (2005) for a detailed discussion of the distinction between ex ante and
ex post innovation-based measures. The ex ante feature of our measure also eliminates look-ahead bias,
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We validate our new measure of patent disruptive potential using many tests. We first

show that patents with higher ex ante disruptive potential are associated with significant

shifts in the ex post trajectory of related future inventions. Future patents cite these

patents more, and we find more ex post “breaks” in citation patterns as defined by Funk

and Owen-Smith (2016). Second, more disruptive patents have higher economic value

(estimated using stock returns as in Kogan, Papanikolaou, Seru, and Stoffman (2016)),

suggesting that the market recognizes their potential to profitably disrupt established

markets. Third, we focus on major radical inventions between 1930 and 2010 (i.e., the

historically important patents as recognized by the USPTO), which include for instance

the television, computer, helicopter, and advances in modern genetics. The vast majority

of these breakthrough patents displayed high disruptive potential at the time of their

applications.

We further validate our measure of disruptive potential by considering the disclosure

of publicly traded firms. To do so, we link startups to publicly traded firms operating

in related product markets by computing the textual similarity between their business

description and that of public firms from their 10-K reports (see Hoberg and Phillips

(2016)). As direct validation of our measure, we find that public firms discuss market

disruption significantly more when they operate alongside startups displaying high tech-

nological disruptive potential.

Our primary analysis focuses on the exit decisions of 9,167 VC-backed U.S. startups

(94,703 patents) over the 1980-2010 period. Our main result is that startups with patents

exhibiting more disruptive potential are significantly more likely to go public compared

to other startups. At the same time, they are less likely to exit by selling out. This

result remains after controlling for startups’ age, size, financing rounds, overall financial

market conditions, and other patent traits such as technological “breadth” (patents that

combine vocabulary from diverse bodies of knowledge), technological similarity to other

firms, patent citations, average word age, and originality.4 The importance of startups’

reduces truncation bias (Lerner and Seru (2017)), and increases the measure’s utility to practitioners (to
predict outcomes and investor returns) and regulators (to assess the impact of policies in real time).

4Our results are also robust to including fixed effects for startup cohorts, geographic locations, tech-
nological categories, changes in econometric specifications that vary the horizon over which we measure
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disruptive potential is economically large, as a one standard deviation increase in disrup-

tive potential is associated with an increase of 25.2% in the probability that a startup

exits via IPO and a decrease of 18.8% in the incidence of a sell-out.

Conceptually, inventions with disruptive potential may lead to the disruption of es-

tablished technological areas or alternatively to the creation of entirely new areas. We

show that startups’ disruptive potential matters most in established areas. Specifically,

we decompose the text of patents into new versus established vocabularies based on the

age of the words used in each patent. We find that the link between startups’ disruptive

potential and exit choices is mostly driven by their disruptive potential in established tech-

nological spaces. This result suggests that the ability to conduct business as a stand-alone

entity is particularly compelling when gains potentially come at the expense of existing

market participants, and hence the synergies from business combination are low.

Our second major finding is that the economy-wide disruptive potential has declined

substantially since the 1950s and that this trend accelerated in the 1990s. Although

the overall decline is interrupted by occasional temporary spikes during the 1970s (i.e.,

computers), the 1980s (i.e., genetics), and the 1990s (i.e., the internet), following each

spike, the trend quickly reverts fully back to the long-term sample-wide decline. Notably,

our decomposition of disruptive potential shows that the decline is particularly strong

in established technology spaces, as we observe the potential to create new technological

areas has remained relatively stable. The trends we observe are consistent with recent

studies suggesting that new ideas are getting harder to discover and develop (Jones (2009)

and Bloom, Jones, Reenen, and Webb (2017)). Our findings indicate that the increased

difficulty to discover new ideas appears particularly salient in established markets.

The confluence of our first two main results (startups with disruptive potential exit via

IPO, and disruptive potential has been declining), motivates a plausible new technology-

based explanation for the aggregate trends away from IPOs and toward sell-outs noted

in recent studies. We assess this explanation by estimating cross-sectional exit models

(including and excluding our explanatory variables) over an initial period (1980-1995),

exits (ranging from the next quarter to the next five years), and to focusing on the early part of the
sample to limit potential truncation bias (Lerner and Seru (2017)).
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and use the fitted model to predict exit rates in the subsequent out-of-sample period

(1996-2010). A model that excludes our technological characteristics predicts an out-

of-sample quarterly IPO rate of 0.84 percentage points. The actual rate was just 0.33

percentage points, confirming that IPOs were abnormally scarce in recent years. Adding

our new variables to the fitted model reduces this gap by roughly 20% overall, and 40%

for small IPOs, which are the segment displaying the sharpest decline in recent years (see

Gao, Ritter, and Zhu (2013)). This improvement is 25% in more stable markets, and

just 3% in fluid markets, consistent with disruptive ideas declining most sharply in more

established markets. A similar analysis reveals that our new technology measures account

for roughly 50% of the recent rise in sell-outs.

Our analysis adds to the recent literature examining explanations for the recent dis-

appearance of IPOs and the contemporaneous rise of sell-outs.5 Ewens and Farre-Mensa

(2018) indicate that part of the IPO decline results from the increased bargaining power

of founders, their preference for control, and inexpensive capital in the private market.

Gao, Ritter, and Zhu (2013) suggest that the decline in IPOs originates from changes

in market structure that favor selling out to realize economies of scope. Doidge, Kahle,

Karolyi, and Stulz (2018) argue that an increased focus on intangibles also likely plays

an important role. Our paper shows that changes in firms’ technological traits (especially

disruptive potential) can also account for part of the decline in IPOs and the surge in

sell-outs in the recent period. We examine both exit margins jointly and quantify how

much of the observed trends are attributable to changes in technological characteristics.

Our findings also add to the literature studying the determinants and performance

of startup exits. The vast majority of past studies either examine IPO or sell-out exits

in isolation or bundle them into a single proxy for successful exit (Bernstein, Giroud,

and Townsend (2016) and Guzman and Stern (2015)). The small number of studies that

examine these exit choices jointly indicate that they depend on founders’ private benefits of

control, product market presence, and firms’ growth potential (Cumming and Macintosh

(2003), Bayar and Chemmanur (2011), Poulsen and Stegemoller (2008) or, Chemmanur,

5See Ritter and Welch (2002) and Lowry, Michaely, and Volkova (2017) for comprehensive surveys.
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He, He, and Nandy (2018)). The limited evidence on the role of technology for startups’

exit is surprising given the practical importance of exit payoffs in entrepreneurship, and

particularly in technology sectors (Wang (2018) or Phillips and Zhdanov (2013)).

Finally, our paper adds to recent studies using patent text to characterize technol-

ogy. Packalen and Bhattacharya (2018) and Balsmeier, Assaf, Chesebro, Fierro, Johnson,

Johnson, Li, Luck, OReagan, Yeh, Zang, and Fleming (2018) identify new ideas based

on the first appearance of words (or sequences of words), and analyze their propagation.

Kelly, Papanikolaou, Seru, and Taddy (2019) construct a measure of patent quality (or

“significance”) based on textual similarity with prior and future patents and examine

technological change in the long run and its implications for growth. Our study comple-

ment theirs as we focus on ex ante technological disruptive potential, its role in explaining

startups’ exit choices at a micro-level, and the evolution of IPOs and sell-outs in recent

years.

II Technological Characteristics and Exit Decisions

Our paper focuses on the decision of successful startups to exit by either listing shares

on the stock market or by selling out to other entities. We consider a simple rational

framework in which a startup (i.e., the entrepreneurs and their backers) choose the exit

method that maximizes the value received by equity holders upon exiting. This payoff is

the total value conveyed to the startup by dispersed investors when startups exit through

IPO and by strategic buyers when they exit by selling out. As a starting point, the theory

of the firm (Grossman and Hart (1986) and Hart and Moore (1990)) suggests that this

choice thus depends on whether the startup’s value is higher as a stand-alone operating

entity or when it is integrated with the assets of another entity. Our central hypothesis

is that dichotomy depends on the core characteristics of the startup’s technologies.

We hypothesize that a crucial aspect is the extent to which the startup’s technology has

either “disruptive” or “synergistic” potential relative to existing firms. A technology has

disruptive potential if it has the potential to eventually displace (i.e., reduce the value

of) existing inventions and significantly influence the path of future innovation in the

6



surrounding technological space (Dahlin and Behrens (2005)). In contrast, a technology

has synergistic potential if its features complement (i.e., increase the value of) existing

inventions and thus serve to enhance the surrounding technological space. We argue that

these core features impact a startups’ stand-alone value versus its value as an acquisition

target. Hence these features should predict the choice of exit.

By design, technologies with disruptive potential offer limited synergistic value to other

parties because they displace rather than improve existing technologies. Startups with

such technologies can thus generate high valuations as independent stand-alone entities.

In particular, success does not rely on pairing these technologies with those of other

firms, and does not require strategic assistance from other firms (Bayar and Chemmanur

(2011)).6 Maintaining independence also avoids the need to share the overall rents with

a potential acquirer, further increasing payoffs to initial equity holders who can capture

all rents. We thus predict that startups developing technologies with more disruptive

potential should favor exits via IPOs.7

In contrast, synergistic technologies have low stand-alone values because their eco-

nomic benefits arise primarily through combinations with existing technologies. In this

case, exit via acquisition can achieve higher valuations than stand-alone values (Higgins

and Rodriguez (2006)) because it provides a new source for innovation (Holmstrom and

Roberts (1998)), facilitates technology coordination (Hart and Holmstrom (2010)) and

complements established firms’ technology portfolios (Cassiman and Veugelers (2006)).

However, this has to be juxtaposed against the fact that selling out requires sharing fu-

ture rents with the buyer. We thus predict that startups with less disruptive potential

and high synergistic potential should prefer exiting via sell-outs. For such firms, the gains

to business combination can plausibly outweigh the costs of sharing future rents.8

6Consistent with this idea, Darby and Zucker (2018) show that biotechnology firms go public when
their innovations can be successfully commercialized, Chemmanur, He, He, and Nandy (2018) report
that manufacturing firms are more likely to go public than sell-out when they already have a defensible
product market presence (i.e., market share), and Poulsen and Stegemoller (2008) and Cumming and
Macintosh (2003) show that firms with more growth potential favor exit through IPOs.

7Relatedly, Hackbarth, Mathews, and Robinson (2014) show that the value of less developed growth
options is higher in a stand-alone entity than in a combined entity. Their theory reinforces our prediction
if technologies with disruptive potential are relatively less developed.

8In addition, such technologies could also attract higher valuations in sell-out than in IPOs because
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Our central hypothesis links exit choices to the fundamental characteristics of their

technologies. If the predicted economic tradeoffs are stable over time, and the technolog-

ical characteristics of startups change over time, our hypothesis has further consequences

for the time series. For example, if the disruptive potential of technologies is declining or

the synergistic potential is increasing over time, we would predict a corresponding decline

in the IPO exit rate and an increase in the sell-out rate. Our hypothesis thus offers a

new potential explanation for the aggregate decline in IPOs and the surge in sell-outs

documented by recent studies (Gao, Ritter, and Zhu (2013)).

Existing research suggests that such a scenario based on changes in startups’ techno-

logical characteristics might indeed be valid, at least in part. For instance, Jones (2009)

and Bloom, Jones, Reenen, and Webb (2017) provide evidence of a secular decline in the

productivity of technological research across different sectors over time, and they argue

that such a trend reflects the increased difficulty to find breakthrough ideas. This result

is also consistent with product life cycle theories (Abernathy and Utterback (1978) and

Klepper (1996)), which posit that innovation slows and becomes more incremental over

time as product markets mature. Further supporting this foundation, Wang (2018) finds

that entrepreneurs increasingly develop technologies that overlap (i.e., complement) po-

tential acquirers, likely with the intent to trigger profitable sell-outs. This can further

crowd-out the incidence of breakthrough innovations. Our second major hypothesis is

thus that part of the recent shift in startup exits from IPOs to sell-outs is attributable to

a decline in the average disruptive potential of startups’ technologies.

III Data and Methods

In this section, we first describe the patent textual data, explain the construction of our

new text-based measures of technological characteristics, and then present the character-

istics of our startups’ sample.

buyers might have better information about synergistic technologies than disruptive ones (Kaplan (2000)
or Hirshleifer, Hsu, and Li (2017)).
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A Patent Data and Text

We gather information from Google Patents for all 6,595,226 patents that were applied

for between 1930 and 2010 and granted by 2013. For each patent, we gather the publica-

tion date, application date, names of inventor(s), and initial assignee(s). We also collect

the full patent text and information on the technology classification of the patents by

converting the U.S. Patent Classification (USPC) into the two-digit NBER technology

codes created in Hall, Jaffe, and Trajtenberg (2001). Since we are interested in measuring

the technological changes pertaining to the corporate sector, we categorize each patent

based on four types of applicants: U.S. public firms, U.S private firms, foreign (private or

public) firms, or others (e.g., universities or foundations). For brevity, we describe this

classification method in the Internet Appendix (Section IA.A).

[Insert Figure I about here]

The full text of each patent consists of three distinct sections: abstract, claims, and

description. The claims section defines the scope of legal protection granted. The de-

scription section explicitly describes the characteristics of the invention/innovation. It

typically includes a title, technical field, background art, specification example, and in-

dustrial applicability. The abstract contains a summary of the disclosure contained in the

description and claims sections. Figure I presents an example of a typical patent textual

structure (#6285999, “A method for node ranking in a linked database”, assigned to

Google in 1998). We append all three sections into a unified body of text because earlier

patents do not include all sections, and because the organization of patent text into the

three sections may have changed over time (Packalen and Bhattacharya (2018) or Kelly,

Papanikolaou, Seru, and Taddy (2019)).

Following earlier studies constructing variables from text (e.g., Hanley and Hoberg

(2010) or Hoberg and Phillips (2016)), we represent the text of each patent as a numerical

vector with a length equal to the number of distinct words in the union of all patent

applications in a given year t. We denote this length Nt.
9 Following the convention in

9We organize patents based on their application year rather than the year of the patent grant, as this
more accurately reflects the timing of innovation.

9



the literature, we eliminate commonly-used words (words appearing in more than 25%

of all patents in a given year) and rare words (words appearing only in one patent in a

given year).10 Each patent j applied for in year t is then represented by a vector Vj,t (of

length Nt) in which each element corresponds to the number of times patent j employs

one of the unique Nt words used in year t. If patent j does not use a given word, the

corresponding element of Vj,t is set to zero. This vectorization procedure insures that all

patent applications in a given year are represented by a collection of vectors that are in

the same space (of dimension Nt).

Due to the large number of words used across all patents in a given year, the vectors

Vj,t are quite sparse, with most elements being zero. For instance, in 1980, the number

of distinct words used in an average patent is 352, and the median is 300, while there

are 400,097 distinct words used across all patent applications. In 2000, the average and

median are 453 and 338, and the total across all applications is 1,358,694.

B Technological Disruptive Potential

As noted earlier, we define the disruptive potential of a given patent as its potential to

change the technological path of other firms operating in related markets and to poten-

tially disrupt established markets or create new ones (Dahlin and Behrens (2005)). Our

goal is to construct a variable that is theoretically motivated, measurable ex ante, and

highly correlated with (realized) ex post disruption. Indeed, since our research ques-

tion relies on predictive models of startups’ exit, it is important to develop a measure of

patents’ disruptive potential using only data that is available at the time of their appli-

cation.11 To measure technological disruptive potential, we focus on the extent to which

a given patent uses vocabulary that is new or experiencing high growth in usage within

the set of all contemporaneous patent applications from the same year.

10Given the highly technical and rapidly evolving nature of text in the patent corpus, we do not
implement additional filters (e.g. nouns only). While this choice might potentially introduce noise into
our measurements, it maintains power.

11We also believe that an ex ante measure of disruptive potential is also useful to practitioners and
regulators who might seek actionable information about the state of innovation in real time and its
implications for near-term new product creation, job creation, and the amount of economic value likely
to be created from current innovation in coming years.
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We start by defining an aggregate vector Zt in each year t with elements containing

the number of times a given word is used across all patent applications in year t. This

vector thus represents the aggregate frequency of word usage in the patent corpus in a

given year. We then compute the annual rate of change in the usage of each word (from

t− 1 to t) by defining the (annual) vector Dt as:

Dt =
Zt − Zt−1

Zt + Zt−1

, (1)

where division is element-by-element.12 The set of annual vectors Dt thus tracks the

appearance, disappearance, and growth of specific technological vocabulary across all

patents over time. Elements of Dt are positive if the usage of the corresponding words

increases from year t−1 to t, and negative if it decreases (e.g., words becoming obsolete).

[Insert Table I about here]

As an illustration, Table I displays the ten words experiencing the largest increases and

decreases in usage across all patent applications in specific years. For instance, in 1995,

we detect an acceleration of terms related to genetics, such as “polypeptides”, “clones”,

“recombinant” and “nucleic”, following rapid progress in genome sequencing. In that

year, use of terms such as “cassette,” “ultrasonic,” and “tape” are sharply decreasing. In

2005, the most rapidly growing words are related to the internet and include terms such

as “broadband”, “click”, “configurable”, or “telecommunications”.

To obtain the disruptive potential of a given patent j, we take the frequency-weighted

average of the vector Dt based on the words that patent j uses as follows:

Disruptive Potentialj,t =
Vj,t

Vj,t · 1
·Dt × 100, (2)

where the operator “·” denotes the scalar product between two vectors, and “1” is a unit

vector of dimension Nt. Intuitively, patents using words whose usage surges across all

patent applications (i.e., have positive entries in the vector Dt) have higher disruptive

12To ensure Zt and Zt−1 are in the same space (i.e., the union of Nt and Nt−1), we modify Zt−1 by
adding zero elements for words that newly appeared in year t (as they were not originally in the t − 1
space). Analogously, we modify Zt by adding zero elements for words that appeared in year t − 1 but
not year t.
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potential. This is the case for patents that either employ words that appear in the patent

space for the first time, or that use established words whose usage experiences fast growth

across all patents.

Hence, based on the illustrative words presented in Table I, a patent using words such

as “polypeptides”, “clones”, “recombinant” and “nucleic” is classified as having disruptive

potential if its application year is 1995 (when their growth rates are highest), but not if

its application is in 2005. Symmetrically, a patent relying extensively on words whose

usage decreases across all patents (i.e., using obsolete vocabulary such as “cassette,” or

“tape” in 1995) is classified as having low (and possibly negative) disruptive potential.

Intuitively, not all inventions exhibiting disruptive potential will lead to direct com-

mercial success (Christensen (1997)). As a result, a crucial aspect of our study is to

provide evidence that the new proposed measure of disruptive potential performs well in

predicting outcomes related to actual disruption. Section IV is fully dedicated to exactly

that, and we note here that our measure of disruptive potential indeed strongly predicts

influential and disruptive outcomes ex post, as measured by their ex post citation path,

their ability to predict which patents appear on influential lists constructed by other schol-

ars, the economic value they create, and the incidence of established firms in the market

explicitly complaining about disruption in their public disclosures.

C Technological Breadth and Similarities

We also use the text in patents to measure their technological breadth, as well as their

similarities with the patents of economically linked firms. To measure the technological

breadth of a patent, we first identify words that are strongly associated with a specific

technological field using the six broad technological fields (f) defined by the first digit

of the NBER technical classification.13 Specifically, we count how often a given word

is used by patents classified into each field in each year, and keep the two fields with

the highest usage of the given word. We define a word as “specialized” (and associated

with a field f) in year t if its use in its most popular field is more than 150% that of

13“Chemicals”, “Computer and Communication”, “Drugs and Medicine”, Electricity”, “Mechanics”,
and “Others”.
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its second most popular field in year t. Each word is thus classified into one of the six

fields of specialization or it is deemed an “unspecialized” word.14 Second, we define as

wj,t,f the fraction of patent j’s specialized words that are classified into each field f . By

construction, each wj,t,f lies in the [0,1] interval, and they sum to one for each patent j.

We then define technological breadth as:

Tech Breadthj,t = 1−
6∑

f=1

w2
j,t,f . (3)

This measure is one minus the technological concentration of the patent’s vocabulary.

Patents have higher technological breadth if they amalgamate vocabularies from differ-

ent specialized technological fields, and lower breadth when they use vocabulary that

primarily concentrates on one specialized technological area.

We measure technological similarity by directly comparing the vocabulary of a given

patent to that of patents assigned to three specific groups: lead innovators, private U.S.

firms, and foreign firms. We focus on cosine similarity measures (see Sebastiani (2002)),

defined as the scalar product between each patent j’s normalized word distribution vector

Vi,t and a normalized word vector aggregating the vocabulary specific to a given group of

patents.15 To capture the similarity of a given patent j with patents of “Lead Innovators”

(henceforth LI), we define LIs annually as the ten U.S. public firms with the most patent

applications. This set, which includes for instance Microsoft and Intel in 2005 and General

Electric and Dow Chemical in 1985, varies over time as the importance of sectors and firms

changes. For each set of LIs in year t, we first identify the set of patents applied for by

the LIs over the past three years (i.e., from year t−2 to t). The aggregate LI word vector

in year t (VLI,t) contains the aggregate frequency of word usage across this set of patents.

We then compute the similarity of any given patent to those of the LIs as:

LI Similarityj,t =
Vj,t

‖Vj,t‖
· VLI,t

‖VLI,t‖
. (4)

Because the word vector VLI,t aggregates word usage across patents of lead innovators in

14For instance, words such as “bluetooth” and “wifi” are in the “Computer and Communication” field,
and “acid” and “solvent” are in the “Chemicals” field.

15The result is bounded in [0,1] and values close to one indicate closer textual similarity.
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the last three years, patents exhibiting higher levels of LI similarity contain technologies

that are textually close to those of lead innovators.

We use similar methods to compute the similarity between the text in each patent j

and the overall text of patents assigned to private U.S. firms or to foreign firms. Specif-

ically, we form the aggregate private firm (foreign firm) word vectors VP,t (VF,t) as the

aggregate word vector in year t that contains the aggregate frequency of word usage across

these sets of patents.16 We then compute the similarity between each patent j and the

contemporaneous patent applications of all private U.S. (foreign) firms based on the co-

sine similarity between Vj,t and VP,t (VF,t). These measures are high for patents whose

vocabulary is technologically close to that of patents assigned to private U.S. firms or to

foreign firms, respectively.

D Linking Patent-Level Traits of VC-backed Startups

Our objective is to link the exit strategy of all private firms that are plausible candidates

for IPOs or acquisitions to their technological characteristics. Because data limitations

preclude this, we focus on a large sample of venture-backed private startups, for which

we observe both their technological specificities and their exit choices. We obtain data

on VC-backed U.S. firms from Thomson Reuters’s VentureXpert (Kaplan, Stromberg,

and Sensoy (2002)), which contains detailed information about private startups including

the dates of financing rounds and their ultimate exit (e.g., IPO, acquisition, or failure).

We focus on the period 1980-2010 and restrict our attention to VC-backed companies

(henceforth startups) that are granted at least one patent during the sample period.

To link patents to startups, we follow Bernstein, Giroud, and Townsend (2016) and

develop a fuzzy matching algorithm that matches the names of firms in VentureXpert

to patent assignees obtained from Google Patents (see Section IA.B of the Internet Ap-

pendix for details). The result is an unbalanced panel of startup-quarter observations.17

16Because these groups contain very large numbers of patents, we aggregate over just the single year
t. We also note that when a patent j belongs to a private U.S. firm or a foreign firm, we exclude it from
the set of patents used to compute VP,t and VF,t, respectively.

17Lerner and Seru (2017) note that bias can occur in matching patent assignments to startups because
patents can be assigned to subsidiaries with different names than their parent corporations. However, this
issue is limited in our sample as startups are small and are unlikely to have complex corporate structures.
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A startup enters our sample in the quarter it is founded (based on founding dates in Ven-

tureXpert) and exits the sample when its final outcome (IPO, acquisition, or failure) is

observed based on the “resolve date” variable in VentureXpert. Startups still active as of

November 2017 remain unresolved.18 We exclude startups if their founding date is missing

or if it is later than the resolve date. The sample begins in 1980 to guarantee reliable

data on outcomes and ends in 2010. Our final sample contains 347,929 startup-quarter

observations, corresponding to 9,167 unique startups and 94,703 patent applications.

We obtain the technological characteristics for each startup-quarter by aggregating

each patent-level variable (text-based and others) using their depreciated sums over the

past 20 quarters using a quarterly depreciation rate of 5%. For example, the technological

disruptive potential of startup i in quarter q corresponds to the depreciated sum of the

disruptive potential of all its patent applications in the past five years, normalized by the

number of patents startup i applied for over that period.19 We define the exit variables

(IPO or sell-out) as binary variables equal to one if startup i experiences a given exit in

quarter q. The construction of all variables is explained in detail in Table A1.

Although our sample does not include all firms that have the potential to go public or

get acquired, VC-backed startups nevertheless represent a useful laboratory to study the

interplay between technological changes and their exit choices. First, these firms account

for a large share of the IPO market (Ritter (2017)) and the production of innovation

(Gornall and Strebulaev (2015)). Second, we show later that their IPO and acquisition

rates over the last thirty years are comparable to the economy-wide patterns. Third, VC-

backed startups generally exit promptly due to the limited lives of most venture capital

funds.

18Ewens and Farre-Mensa (2018) note that unresolved firms can result from stale data collection. Thus,
we code firms as failed if it has been seven years since their last funding round.

19Because Foreign Similarity and LI Similarity are non-trivially correlated (60% and 45%) with Private
Similarity, in regressions, we orthogonalize Foreign Similarity and LI Similarity by subtracting Private
Similarity.
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E Descriptive Statistics

Table II presents descriptive statistics for our new text-based technological characteris-

tics as well as existing patent variables from the literature. All variables are defined in

Table A1. We present patent-level statistics for the full sample of patents (1930-2010)

in Panel A, and startup-quarter-level statistics (1980-2010) in Panel B. Focusing on our

central new variable – technological disruptive potential – we note that its empirical em-

pirical distribution is highly skewed. The first row of Panel A indicates that the average

disruptive potential of patents is 1.64, the median is 1.27, and the 75th percentile is 2.34.

The observed asymmetry indicates that while the vast majority of patents contain incre-

mental inventions, a smaller set of patents appear to be highly disruptive. Despite the

aggregation of their patents, we observe a similar asymmetry in the disruptive potential

of startups, with a median of zero, and the 75th percentile is 0.98.

[Insert Table II about here]

Table II also provides statistics for our other text-based measures of patent characteris-

tics. Unlike technological disruptive potential, patent breadth is more evenly distributed,

indicating less skew in technological specializations. We also observe some variation in

similarity across patents, but the overall levels are low, which is not surprising given the

large range and diversity in the vocabulary used across all patents. Overall, the patent

and startup-quarter statistics are similar, indicating that the technological characteristics

of VC-backed startups are roughly representative of those in the economy at large. Rele-

vant for our regression analysis, Panel B further indicates that the quarterly IPO rate (i.e.

the number of IPOs in a quarter divided by the number of active startups in that quarter)

is 0.38 percentage points, and the quarterly sell-out rate is 0.54 percentage points.20

20We report additional information about the sample firms in the Internet Appendix in Table IA1.
Relative to the founding date, IPOs and acquisitions play out over time. Of these, IPOs occur fastest on
average. The average firm applies for its first patent after 4.42 years and receives its first round of VC
funding 5.29 years after its founding. All of these numbers are mechanistically reduced when measured
relative to the first patent instead of the founding year.
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IV Validation of Disruptive Potential

In this section, we consider multiple tests of validity of our measure of technological dis-

ruptive potential both at the patent level and at the startup level. First, we examine the

link between disruptive potential, ex post citation patterns and economic value at the

patent level. Second, we assess the level of disruptive potential of a list of unambiguous

breakthrough patents created by outside sources. Third, we explore whether publicly

traded firms operating in markets related to startups that score high on disruptive poten-

tial actually complain about the possibility of disruption in their 10-K annual reports.

A Citation Patterns and Economic Value

Our initial tests explore directly whether a patent’s disruptive potential is realized ex post

via three distinct metrics. As we expect disruptive patents to become highly cited if they

are shifting the technological direction of other firms, we first consider the (logarithm

of one plus the) number of citations the patent receives ex post, gathered from Google

Patents.21 Second and perhaps most direct, we also expect that disruptive patents will

actually change not just the intensity of impact (as measured by cites) but also the

literal path and direction that technology creation takes going forward. We thus consider

an innovative measure of breaks in this path developed by Funk and Owen-Smith (2016),

which detects whether patents trigger structural breaks in citation patterns (mCD). This

approach is based on whether the patents citing a focal patent also cite the patents cited

by the focal patent (see also Wu, Wang, and Evans (2019)). Third, following Kogan,

Papanikolaou, Seru, and Stoffman (2016), we examine the economic value of patents as

an indicator of each patent’s realized potential. This final test is restricted to patents

assigned to publicly listed firms, as we measure economic value as the (logarithm of the)

estimated market value created by the patent based on the stock market reaction to the

patent’s issuance.

[Insert Table III about here]

21We focus on citations received within five years of the grant date to limit truncation bias, but the
results hold when we use all citations as of 2013 or in the first year or two after grant.
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Table III presents the results of these three tests, which are based on patent-level

regressions. Each ex post metric is regressed on each patent’s measured disruptive poten-

tial. We include cohort fixed effects (based on grant years) to specifically isolate variation

across patents granted in the same year, and we cluster standard errors by cohort. Re-

sults in Panel A reveal that our measure of disruptive potential is positively associated

with all three ex post metrics. The estimated relationships are also highly statistically

significant with t-statistics ranging between 4.35 and 7.48. These results confirm that,

on average, patents with more disruptive potential create higher impact in the form of

citations, generate more economic value in the stock market, and they trigger a significant

shift in the direction of innovation in the technology space.

In Panel B, we additionally control for heterogeneity in the citation patterns and

other unobserved variables that might exist across different technology areas as we include

interactions between cohort and technology area fixed effects. We define technology areas

using two-digit NBER technology codes (Hall, Jaffe, and Trajtenberg (2001)). In Panel C,

we additionally include four patent characteristics as control variables to better isolate the

unique content of our measure of disruptive potential. These variables are technological

breath and similarities between each patent and the set of patents granted to the universe

of private, public, and foreign firms. In both panels, we continue to observe strong and

positive relationships between outcomes and disruptive potential, consistent with our

measure capturing the potential to alter technological paths and displace existing ideas.22

B Unambiguous Breakthrough Inventions

Next, we examine whether patents that have been historically recognized for their tech-

nological breakthroughs and commercial successes displayed disruptive potential in their

application year. We focus on two distinct sets of patents gathered from external sources.

First, we consider a collection of twelve breakthrough patents, as identified by the

22We also note that the estimated associations reported in Table III indicate that ex post outcomes
are not perfectly predictable, something we expect of any ex ante predictive measure. Hence a patent’s
disruptive potential often predicts disruptive impact, but not always. This conclusion is consistent with
Christensen (1997) and Christensen and Rosenbloom (1995)).
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USPTO’s “Significant Historical Patents of the United States”.23 Panel A of Table IV

displays these patents. We score each patent for their disruptive potential based on their

percentile rank in the distribution of (their cohort-adjusted) disruptive potential. For

instance, a value of 0.95 indicates that the patent is in the top 5% of the distribution.

Reassuringly, these disruptive patents displayed high disruptive potential at the time of

their application to the USPTO, as they collectively rank on the 82nd percentile of the

disruptive potential distribution. The patents that displayed the highest disruptive poten-

tial in this set are the “Complex computer” in 1944 (#2668661) and DNA modifications

in 1980 (#4399216), both of which virtually created new industries. Other key inventions,

such as the satellite (#2835548), laser (#2929922), and PageRank (#6285999), also use

vocabulary that was new and rapidly growing across many patents around the time of

their application.24

[Insert Table IV about here]

Second, we consider a more comprehensive list of 101 important patents between 1930

and 2010 identified by Kelly, Papanikolaou, Seru, and Taddy (2019) based on several

on-line lists of “important” patents. This set encompasses indisputably important and

radical inventions that we display in detail in the Appendix for brevity (Table A2). We

again score each patent based on its percentile rank in the (cohort-adjusted) distribution of

technological disruptive potential, and present summary statistics in Panel B of Table IV.

We find that the disruptive potential of these patents is in the 71st percentile on average

and the median patent is in the 81st percentile.25 These average percentiles are measured

23Listed patents applied before 1960 come from a list of historical patents at
http://www.uspat.com/historical/. More recent patents are noted for the revenue they generated.

24Interestingly, some of these breakthrough inventions are barely cited. For instance, the patents
related to the invention of the “television” (#1773980) and the “helicopter” (#1848389) are in the lowest
percentile of the cohort-adjusted distribution of citations. Yet, our new measure classifies these patents
as highly disruptive. Kelly, Papanikolaou, Seru, and Taddy (2019) similarly note that some patents
classified as significant based on their measure attract few citations, and provide illustrative examples,
such as patent #174465 issued to Graham Bell for the telephone in 1876 having received only 10 citations
until March 2018.

25For comparison, Kelly, Papanikolaou, Seru, and Taddy (2019) report that the average patent is
this same set is in the 84th percentile of the distribution of their patent significance measure, and the
average percentile for the KPSS measure for this set of patents is 68. Thus, despite being computed
using ex ante information, our measure of disruptive potential appear strongly correlated with that of
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rather precisely as the standard error is 0.027. Overall, these findings confirm that the vast

majority of breakthrough patents display systematically high levels of measured disruptive

potential.

C Perceived Disruption Risk

As a third validity check, we examine whether publicly traded firms actually complain

about potential disruption in their 10-K disclosures to the Securities and Exchange Com-

mission when the startups operating in their product markets have patents with high

disruptive potential. For each startup in our sample, we identify the set of public firms

offering similar products and services using an approach based on Hoberg and Phillips

(2016). We obtain product descriptions of startups from VentureXpert as reported in

the year of their first round of funding and we use the product descriptions from 10-K

reports for the public firms. We then compute the cosine similarity between the product

description text of each startup and each public firm in year t. We focus on startups that

received their first funding round between 1997 and 2010 as 1997 is the first year we have

available 10-K data. This sample includes 5,417 distinct startups (60% of our original

startup sample). We identify a startup’s public “peers” as the 25 public firms with the

highest textual similarity to the startup’s product vocabulary.

We then compute the intensity with which the 25 public peers of each startup directly

discuss risk of disruption. We do so by computing the fraction of paragraphs in each

public firm’s 10-K that mention words related to technology-based disruption using three

measures. First, we search for paragraphs that contain words having the roots “technol”

and “change” to measure whether public peers are discussing exposure to technological

changes, a form of technology-specific disruption. Second, we identify paragraphs having

words with the roots “technol” and “compet” to identify firms that are explicitly dis-

cussing competition in the technology space. Third, we consider the more strict set of

paragraphs containing the roots of “technol” and “compet” together with either “disrupt”,

“change”, or “obsoles”

Kelly, Papanikolaou, Seru, and Taddy (2019) which utilize ex post information (i.e., textual similarity
with future patents).
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[Insert Table V about here]

To assess whether public firms recognize the disruptive potential of related startups,

we average these three measures over the 25 public peers for each startup and regress the

resulting public-firm measures on the focal startup’s technological disruptive potential

(measured as of the startup’s first funding round, contemporaneous to the assignment of

its public peers). Table V displays the results and shows positive associations between the

startup’s technological disruptive potential and all three disruption mentions measures.

The positive relationships hold across specifications that include either year fixed effects or

a more complete set of fixed effects including year, technology, startup location, startup

age, and startup cohort. These results further support the validity of our measure of

disruptive potential and also its economic relevance as established public firms actually

discuss disruption in their disclosures.

V Disruptive Potential and Startups’ Exits

We now turn to testing whether startups with higher disruptive potential are more likely

to exit through a public listing and less likely to sell-out.

A Main Results

Our baseline specification relies on the competing risks regression approach of Fine and

Gray (1999) that explicitly models the “risk” of choosing a particular exit in quarter q

given that the firm is still unresolved at that time.26 Startups enter the sample (i.e.,

become at risk of exiting) when they are founded. Their exit is modeled using competing

hazards to reflect multiple potential exit strategies that are mutually exclusive. This

approach allows us to estimate the relationships between startups’ disruptive potential

and the full set of potential exits.

To ensure that we are not capturing the effects of other technological characteristics

that may correlate with disruptive potential, we include in the specification the log of one

26The use of a competing risk model is relatively rare in finance. One recent exception is Avdjiev,
Bogdanova, Bolton, Jiang, and Kartasheva (2017), who examine the determinants of convertible capital
choice by banks.
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plus the number of patent applications in the past five years, a dummy variable indicating

startups with no applications in the past five years, startups’ technological breadth, and

technological similarities to lead innovators, private firms and foreign firms. We also con-

trol for the originality of startups’ patents and their patents’ citations (both aggregated as

stock levels for each startup-quarter as is the case for our text-based variables). Following

the literature on IPOs and acquisitions, we also control for overall market activity using

market relative valuation and stock returns as well as an identifier for the last quarter of

the year (Lowry (2003) and Pastor and Veronesi (2005)). Overall, with the exception of

patent citations, all variables included in our model are ex ante measurable. We include

citations only to be consistent with the existing literature. We cluster the standard errors

by startup to account for any potential within-startup dependencies over time.

[Insert Table VI about here]

The first two columns of Table VI provide support for our central hypothesis. In the

first column, we observe a strong positive link between startups’ disruptive potential and

their likelihood of exiting through an IPO in the next quarter. The point estimate is

0.252 with a t-statistic of 13.09. As predicted, startups with disruptive potential favor

remaining independent as stand-alone entities and exit through public listings. On the

other hand, column (2) reveals that the odds of exiting via a sell-out are negatively

related to startups’ disruptive potential. Indeed, the estimated coefficient is negative

(-0.188) and statistically significant with a t-statistic of -7.55.27 In addition to being

statistically significant, these baseline estimates reveal economically large relationships:

a one standard deviation increase in startups’ disruptive potential is associated with a

25.2% increase in the quarterly rate of IPOs, and a 18.8% decrease in the sell-out rate.28

27These results continue to hold if we only use exits in the form of acquisitions that are are clearly
successful to avoid the potential misclassification highlighted by Maats, Metrick, Yasuda, Hinkes, and
Vershovski (2011). To do so, we restrict to sell-outs that we can match to acquisitions in the SDC
transaction database and that are larger than $25 million (in 2009 dollars). Results are displayed in the
Internet Appendix (Table IA2). We thank Josh Lerner for suggesting this test.

28As explained in Fine and Gray (1999), regression coefficients from a sub-distribution hazard model
denote the magnitude of the relative change in the sub-distribution hazard function associated with a
one-unit change in the given covariate. Therefore, estimated coefficients reflect the relative change in the
instantaneous rate of the occurrence of the event in those subjects who are event-free.
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Table VI shows that the startups’ other technological characteristics are also important

determinants of startups’ exits. We observe for instance that firms’ technological breadth

is positively related to IPO incidence and is negatively related to sell-out incidence. This

follows from the intuition that high breadth technologies are difficult for other firms to

integrate and less redeployable toward other uses, thus tend to offer lower synergies to

potential buyers (e.g., Bena and Li (2013)). Table VI also indicates that firms whose

patents are more similar to those of other private firms are significantly less likely to

exit through sell-outs (t-statistic of -8.62) and are marginally more likely to go public (t-

statistic of 1.70). These results are in line with the negative link between product market

similarity and the likelihood of being an acquisition target documented in Hoberg and

Phillips (2010) for public firms. In contrast, firms holding patents that are more similar

to that of lead innovators are significantly more likely to go public (t-statistic of 4.58). We

also find that future citations (originality) are positively (negatively) associated with exit

via both IPO and sell-out. Also, startups are more likely to exit via IPO after periods of

strong overall stock market performance, consistent with earlier research. The inclusion

of these additional variables further illustrates the robustness of our results.

B Robustness and Dynamics

In the last two columns of Table VI, we report estimates from linear probability models

where the dependent variables are indicators for whether a given exit occurs in a given

quarter. Although this approach ignores the potential dependence across exits (i.e., com-

peting risks), linear models allow us to include a wider array of fixed effects. We include

year, state, technology, age, and cohort fixed effects to estimate the link between exits and

technological disruptiveness among startups of the same age, those receiving first funding

at the same time, those operating in the same year and state, and those innovating in the

same technological fields.29 We find that our conclusions are largely unaffected, indicating

that the association between the disruptive potential of startups and their exits is highly

robust. We also estimate (but do not report for brevity) separate logistic and multinomial

logistic models for each exit type that include year, state, and technology fixed effects.

29Technology fixed effects are based on the most common NBER technology category used in a firm’s
patents (see Lerner and Seru (2017)).
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These tests produce similar results.

In Table VII, we use the same specifications as reported in Table VI, but we fur-

ther control for startups’ financing, as previous research reports that the amount of VC

funding (a proxy for startups’ implied valuation) predicts startups’ exits (Cumming and

Macintosh (2003)). These tests are important because our interpretation of the link be-

tween disruptive potential and startup exits could be due to VCs providing more funding

to startups developing more disruptive technology.30 Table VII indicates that this is not

the case. To account for the possible role of funding, we include startups’ cumulative VC

funding (from founding to quarter q − 1) and a binary variable identifying whether star-

tups received funding in the last five years. Across all specifications, we confirm that the

financing variables are strong determinants of startups’ exit, especially sell-outs. However,

our main result for technological disruptive potential is fully robust, indicating that our

findings cannot be explained by financing.

[Insert Table VII about here]

Table VIII explores the dynamic links between startups’ technological disruptive potential

and exits by increasing the measurement window for identifying startup exits from one

quarter to five years using increments of one year. We focus on linear specifications

that include the full set of fixed effects as described above, and only report coefficients

for the technology variables for brevity. Panel A indicates that the positive associations

between startups’ disruptive potential and IPO incidence remains strong at all horizons.

In contrast, Panel B reveals that the negative relation between disruptive potential and

the propensity to sell-out is only present at short horizons and then fades after two years.

[Insert Table VIII about here]

Finally, we also consider whether technological traits are related to the propensity of

a startup to remain private for longer periods. This analysis is motivated by the evi-

dence in Gao, Ritter, and Zhu (2013) and Ewens and Farre-Mensa (2018) that, in recent

30We confirm this intuition in Table IA3 of the Internet Appendix.
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years, many startups remain private longer. Panel C of Table VIII presents results from

regressions of startups’ odds of remaining private at different horizons on their current

technological characteristics. The results show that startups with higher disruptive po-

tential exit more quickly on average.

We report the results of additional robustness tests in the Internet Appendix. Ta-

ble IA2 shows that our results hold when standard errors are clustered by year, startup

technology, or startup cohort. The results also hold when we exclude citations as a con-

trol, when we only control for the size of a startup’s patent portfolio, and in a sub-sample

comprised only of startup-quarters that resulted in exits. This latter result confirms that

our results are not mechanically driven by startups staying private longer. Table IA4

shows that our results are stable across sub-periods. This ensure that our results are not

driven by either (A) startups that have an “unresolved” status or (B) truncation bias

associated with patents not yet granted (Lerner and Seru (2017)).

C Established and New Technology Spaces

Conceptually, technologies with disruptive potential may significantly alter the nature of

innovation in either established technological areas (Tushman and Anderson (1986)), or

entirely new areas (Acemoglu, Akcigit, and Celik (2014)). To assess which dimension mat-

ters, we now consider refined measures of disruptive potential based on either established

vocabulary or vocabulary newly appearing in the patent corpus.

Our measure for established technological markets focuses on words that have been

used in the patent corpus for at least ten years. We interpret these older words as

pertaining to established technology spaces. We thus modify our baseline definition as

follows:

Disruptive Potential (Established)j,t =
V 10+
j,t

V 10+
j,t · 1

·D10+
t × 100, (5)

where V 10+ and D10+ are the vectors V and D defined in Section III.B, except we remove

elements relating to words less than ten years old within the patent corpus at time t. By

construction, this measure is not influenced by young or new words. For example, patents

containing the word “internet” in 1993 will not necessarily score highly on this measure
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because the new term “internet” is not part of the established vocabulary. Instead, patents

will score higher when they use older words whose usage suddenly surges in volume across

all patent applications in a given year. Such patents thus belong to “second (or later)

waves” of innovation within a specific established technology space.31

Analogously, to measure the potential of a patent to create entirely new technology

areas, we consider only words first observed in the patent corpus during the most recent

ten years. We thus modify our baseline definition as follows:

Disruptive Potential (New)j,t =
V <10
j,t

V <10
j,t · 1

·D<10
t × 100, (6)

where V <10 and D<10 are the vectors V and D as before, but we only keep the elements

relating to words less than ten years old at time t. Intuitively, the above two measures

form a complete decomposition of our main variable of disruptive potential into two

components: potential to disrupt existing and new technology areas.32

[Insert Table IX about here]

To examine the relationship between exits and these two distinct components, we

aggregate the above patent-level measures to firm-quarter variables (analogously to our

original variable) and we include both components in our baseline regressions. Table IX

presents the results for the competing risk and OLS models. We find that IPO exits are

strongly related to startups’ potential to disrupt established areas (with t-statistics of

10.20 and 5.54), but not to their potential to create new areas (with t-statistics of 0.99

and -0.90). Similarly, the incidence of sell-outs is more strongly negative for established

markets although both components are significant. We conclude that disruption in exist-

ing technological areas is more important in determining startup exits. This result further

31An example is patent #7,663,607 for multipoint touchscreens, which was granted to Apple in 2010.
This patent introduced new ways to combine existing technologies at a point in time when cell phones,
display technology, and user-interfaces were the focus of a wave of rapidly expanding patenting activity.

32Apple’s aforementioned touchscreen patent resembles the former; it scores in the 84th percentile of
the former, but in the 2nd percentile of the latter. Conversely, the earliest patents in a sequence of
breakthrough patents governing co-transformation (a method of altering multiple genes) have high levels
of Disruptive Potential (New). Key patents on co-transformation in later years subsequently shifted
towards higher levels of Disruptive Potential (Established). This trend emerges clearly in other technology
spaces we examined including semiconductors.
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suggests that the ability to conduct business as a stand-alone entity (and exit via IPO)

is particularly valuable when gains potentially come at the expense of existing market

participants.

D The Product Markets of Exiting Startups

To further validate the mechanisms linking startups’ disruptive potential to their choice

of exit, we examine the product market characteristics of the 848 startups present in our

sample that go public after 1997. Because these startups become publicly traded, we are

able to link their technological disruptive potential to the product market attributes that

are only measurable for public firms. We consider three such characteristics (measured

in the year of their initial public listing): product market concentration (HHI), the total

similarity of the firm’s products to publicly traded peers (TSimm), and product market

fluidity. These variables are available since 1997 and obtained from Hoberg and Phillips

(2016) and Hoberg, Phillips, and Prabhala (2014).

[Insert Table X about here]

Following the life cycle theory predictions of Abernathy and Utterback (1978) we an-

ticipate that disruption-prone markets are those for which competing early-stage startups

are highly active and thus likely to discover superior technologies. We thus assess whether

going-public startups displaying higher disruptive potential exit into more competitive,

less differentiated, and more fluid product markets. Table X confirms these specific pre-

dictions. Newly-public firms with more technological disruptive potential indeed exit into

markets that are more fluid, contested, and thus subject to disruption. In contrast, IPO

firms with less disruptive potential exit into more stable markets, with less competition,

and higher levels of product differentiation.

VI The Evolution of Disruptive Potential

Our results thus far illustrate a strong cross-sectional relationship between startups’ exit

decisions and their technological disruptive potential. This section studies the aggregate

evolution of patents’ and startups’ disruptive potential.
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A Patents’ Disruptive Potential in the Last Century

We compute aggregate disruptive potential using an average based on a 20-quarter rolling

window.33 Panel A of Figure II plots the result from 1930 to 2010 annualized using a

four-quarters moving average. The figure shows transitory periods of sharply increasing

disruptive potential with an initial peak around 1950 at a level that is roughly double

that in 1930. The period around 1950 is often viewed as time of radical innovation

in manufacturing technologies, featuring the invention of the television, transistor, jet

engine, nylon, and xerography. A second peak occurs in the mid-seventies, corresponding

to innovation related to the computer. The last two peaks of technological disruption

appear in the late eighties and mid-nineties, reflecting waves of inventions related to

genetics (e.g., methods of recombination) and the mass adoption of the Internet.

[Insert Figure II about here]

Despite these periodic surges in disruption, the 1930-2010 period is characterized by

a protracted and steady long-term decline in the disruptive potential of U.S. patents.

Between 1950 and 2010, the average disruptive potential of patents has significantly de-

creased, with levels in 2010 being roughly one quarter that of 1950. Importantly, this

decline is not due to changes in the composition of patents (e.g., shifts across technology

classes) as we continue to observe a similar trend after we account for broad technol-

ogy and location fixed effects (unreported for brevity). Rather, the decline indicates a

widespread deceleration in vocabulary usage growth rates among U.S. patents.34

Panel B of Figure II plots separately the evolution of the two components of patents’

disruptive potential, defined in Section V.C. We note that most of the variation in patents’

disruptive potential comes from the potential to disrupt established technological areas.

Indeed, the aggregate potential of patents to create new areas has remained stable until

the eighties, increasing slightly in the 1990s, and declining after 2000. Taken together,

33We first sum disruptive potential over the patents applied for in a given quarter. We then apply a
5% quarterly rate of depreciation over the 20 rolling quarters and then divide by the number of patents
applied for in these 20 quarters to arrive at the average disruptive potential over time.

34To conserve space, we display and discuss our other text-based variables (the aggregate evolution of
patents’ technological breath and similarity to groups of patents) in the Internet Appendix.
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the secular decline in patents’ disruptive potential echoes recent research highlighting the

increasing difficulty to generate new ideas (e.g., Jones (2009) and Bloom, Jones, Reenen,

and Webb (2017)). Our findings suggest that the increased challenge to discover new ideas

appears particularly salient concerning ideas with the potential to transform established

markets.

B Disruptive Potential, IPO, and Acquisitions

We next contrast the decline in patents’ disruptive potential to the aggregate evolution

of IPOs and acquisitions. We obtain data on IPOs from Jay Ritter’s website and exclude

non-operating companies, as well as IPOs with an offer price lower than $5 per share,

unit offers, small best effort offers, bank and savings and loans IPOs, natural resource

limited partnerships, companies not listed in CRSP within 6 month of their IPO, and

foreign firms’ IPOs. Data on acquisitions are from the Thomson Reuters SDC Platinum

Database, and include all domestic completed acquisitions (of private or public firms)

coded as a merger, acquisition of majority interest, or acquisition of assets giving the

acquirer a majority stake.

[Insert Figure III about here]

The left panel of Figure III plots the number of IPOs for each quarter between 1980 and

2010. The patterns are similar to those reported by Gao, Ritter, and Zhu (2013), Doidge,

Karolyi, and Stulz (2017), and Ewens and Farre-Mensa (2018). To facilitate comparison,

the right panel displays the evolution of aggregate patents’ disruptive potential during the

same period. The evolution of IPO activity rather closely maps the aggregate dynamics

of disruptive potential during this thirty-year period. The number of IPOs drops around

1990, coinciding with a decline in disruptive potential that follows the earlier surge in

genetic science in the mid-1980s. There were more IPOs as the nineties progressed, when

disruptive potential experienced a very large increase. The decline in IPO intensity then

began in the early 2000s, when the average disruptive potential of U.S. patents also started

to plummet. Although much of the variation appears linked to disruptive potential, the

rise in exits around 2005 appears unrelated, and might be linked to increased private
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equity activity during this time.

The middle panel of Figure III plots the evolution of the number of acquisitions, both in

total and separately for private firms. The number of acquisitions has increased since 1980,

with a strong acceleration in the mid-nineties. We note subsequent declines in acquisitions

in the aftermath of the technology bubble and the financial crisis. Yet, the number of

acquisitions remains significantly higher since the mid-nineties when compared to the

1980-1995 period, suggesting a relationship between the surge in aggregate acquisitions

and the decline in disruptive potential of U.S. patents. Although the aggregate pattern

for sell-outs is less striking than that for IPOs, it suggests that acquisitions tend to be

high when overall disruptive potential is lower.

[Insert Figure IV about here]

In Figure IV, we display the evolution of disruptive potential along with IPO and

sell-out rates for the startups in our sample. For the sake of comparison, we compute the

aggregate stock of each variable for the set of patents granted to startups as in Figure II.

In addition, we scale the aggregate quarterly number of IPOs and acquisitions by lagged

real GDP to obtain aggregate exit rates. Reassuringly, the trends in our startup sample

closely map those of the aggregate dynamics, indicating that the technological changes

and exit patterns occurring among startups is mirroring economy-wide changes. We again

observe that periods with elevated disruptive potential exhibit more intense IPO rates,

and lower sell-out rates.

VII Disappearing IPOs and Surging Sell-Outs

We now estimate whether (and how much of) the recent shift in exits away from IPOs

toward sell-outs could be attributed to changes in disruptive potential and other techno-

logical characteristics.

A Prediction Errors for Startups’ Exit

To examine the impact of changing technological characteristics on startups’ exit choice,

we use methods from the disappearing dividends literature (see Fama and French (2001)
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and Hoberg and Prabhala (2009)) and proceed in two steps. First, we estimate two linear

probability models (a “Base” model and a “Text” model) using quarter-by-quarter Fama

and MacBeth (1973) regressions where the dependent variable is the incidence of IPO

exits in each quarter during the initial period 1980-1995 (the “pre-period”). The base

model’s independent variables are from the existing literature and include the (log) of

the startups’ age and the startup’s patent stock. The Text model adds to this startups’

disruptive potential and the additional text-based technology traits considered in this

study. Second, we compute predicted values of IPO incidence for each startup-quarter in

the 1996-2010 period (the “post-period”) by using the average coefficients estimated in

the pre-period as a predictive model, and applying this predictive model using the actual

values of the independent variables in the post-period. We then average the predicted

IPO rates across all startups in each quarter and compare them to the actual observed

quarterly IPO rates in the post-period. Since the coefficients are locked in at their pre-

period fitted values, we are able to isolate variation in these predicted IPO rates in the

post-period that is due to changing startups’ characteristics. We repeat these steps for

sell-outs to compare actual and predicted sell-out rates.

[Insert Table XI about here]

Test 1 in Panel A of Table XI indicates that the base model yields an average predicted

quarterly IPO rate of 0.84 percentage points in the post-period. This predicted incidence

is substantially higher than the actual IPO rate, which is 0.33 percentage points per

quarter in the post-period, implying a prediction error of 0.51. The predicted IPO rate is

thus 2.5 times higher than the actual rate, confirming that observed IPO rates in the post-

period are “abnormally” low. Using the Text model, the average predicted IPO quarterly

rate in the post-period declines to 0.75 percentage points, which is still higher than the

actual incidence rate as the prediction error is 0.42. In the rest of Table Table XI we

modify the definition of the pre- and post-periods or to the forecasting horizon considered

(i.e., the lags between the dependent and independent variables). Although a significant

portion remains unexplained, our overall finding across the array of specifications shown

in the Panel A is that changes in technological characteristics account for roughly 19% of
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the recent decline in IPO rates.

Panel B reports parallel analysis for sell-out rates. A benchmark linear model that

excludes our technology variables estimated in the pre-period yields an average predicted

sell-out incidence of 0.60 percentage points per quarter in the post-period. Compared

to the actual rate of 0.86 per quarter, the base model’s prediction is 42% lower than the

actual rate, suggesting that the prevalence of sell-outs in recent years is “abnormally” high.

Using the Text model, the prediction gap narrows significantly, as we obtain a predicted

sell-out rate of 0.75 percentage points per quarter. When we alter specifications in the

remainder of Panel B, we observe that changes in startups’ technological characteristics

explain between 26% and 71% of the surge in sell-outs. We conclude that roughly 50%

(the average across specifications) of the surge in trade sales is accounted for by changes

in startups’ technological characteristics.

B Small and Large IPOs

The recent dearth of IPOs is particularly pronounced for smaller-company IPOs (see Gao,

Ritter, and Zhu (2013) and Doidge, Kahle, Karolyi, and Stulz (2018)). To further validate

the role of technological changes in explaining the recent decline in IPOs, we rerun the

analysis in Table XI separately for small and large IPO exits. We measure IPO size

using pre-IPO sales data from Gao, Ritter, and Zhu (2013) and inflation adjusted to 2009

dollars. We define an IPO as “small” if its pre-IPO sales are below the median in our

sample ($25 million), and as “large” if its pre-IPO sales exceeds that amount. We then

examine each subsample and estimate the probability that a given startup exits through

a small (large) IPO in a given quarter in the pre-period quarter-by-quarter. As before, we

estimate the model with and without our text-based technological variables, and compare

the predicted IPO rate in the out-of-sample period to the actual rate.

[Insert Table XII about here]

Table XII displays the results. Panel A indicates that, across six specifications which

vary the definition of the pre- and post-periods or the forecasting horizon, changes in star-

tups’ technological traits account for roughly 37% of the disappearing small IPO anomaly
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in the recent period. In sharp contrast, Panel B reveals that adding startups’ technological

characteristics to the regression models (estimated in the pre-period) does not bring the

average predicted rate of large IPOs closer to its actual value in the post-period. We con-

clude that changes in startups’ technological characteristics are particularity important

to explaining the decline in small IPOs.

C The Role of Product Market Stability

We also explore the role of product market maturity in explaining the recent shift from

IPOs to sell-outs. We posit that markets reaching maturity (e.g., markets that effectively

reached a dominant product design) are likely to experience the most extreme decline in

IPO rates. In these markets, breakthrough inventions obtain only with very high search

costs (Jones (2009) and Bloom, Jones, Reenen, and Webb (2017)) as the best ideas are

already “picked over”, so that the decline of startups’ disruptive potential should be a

stronger predictor of lower IPO activity. To test this idea, we follow Hoberg, Phillips,

and Prabhala (2014) and compute the degree of product market fluidity in each startup’s

product market from 1980 to 2010 using the business description text that is available

at the time of the first funding round in Thomson Reuters’s VentureXpert. We first

compute the aggregate change in product description vocabulary used by startups as the

year-over-year change in the frequency of word usage across all business descriptions. This

quantity is computed separately for each word and the result is stored in an aggregate

vector containing the set of word frequency changes for all words (this procedure is similar

to that in Equation (1)). Second, for a given startup, we compute the frequency-weighted

average of this aggregate change vector where the weights are the frequency of words

used by the startup in its own business description (this calculation is similar to that in

Equation (2)). The resulting variable is a product fluidity measure similar to the one used

in Hoberg, Phillips, and Prabhala (2014), but defined over all startups receiving their first

money between 1980 and 2010.

[Insert Table XIII about here]

To assess whether changes in startups’ technological traits account for the recent de-
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cline in IPOs differently in stable and unstable markets, we divide our startup-quarter

observations into above and below median fluidity sub-samples, based on median break-

points chosen separately for each cohort of startups (based on the year of the first funding

round) and repeat the prediction procedure discussed above across each sub-sample. Panel

A confirms that startups operating in stable markets are less likely to exit via IPO rel-

ative to startups in fluid markets, with IPO rates of 0.30% and 0.37% per quarter in

the post-period (1996-2010). Moreover, changes in startups’ technological characteris-

tics explain roughly 25% of the dearth of IPOs in stable markets. This figure is tightly

estimated across different specifications. In contrast, changes in startups’ technological

attributes account for just 3% of the dearth of IPOs in fluid markets. This figure ranges

between -7% and 15% across different specifications. Although market stability is relevant

for understanding the evolution of IPOs, Panel B indicates that such stability has little

effect in moderating our ability to explain the surging sell-outs anomaly, as the average

improvement is 50% and 49% in stable and fluid markets, respectively.

VIII Conclusions

We develop new measures of technological disruptive potential and other technology char-

acteristics using textual analysis of 6,595,226 U.S. patents from 1930 and 2010. We docu-

ment that these characteristics are highly influential in predicting which startups will exit

via IPO or sell-out. We find that startups with more disruptive potential are more likely

to exit via IPO, and are less likely to exit via sell outs, especially in established markets.

Understanding the economics of startups’ with disruptive potential is most intuitive when

juxtaposed against the concept of synergistic potential (patents that complement and re-

fine existing technologies). Startups with disruptive potential likely favor IPOs because

disruptive technologies tend to be economic substitutes for existing technologies and lack

synergies for buyers. Additionally, these technologies likely enable startups to establish

independent markets, allowing their owners to extract all rents without having to share

with a potential acquirer.

In contrast, patents with low disruptive potential and high synergistic potential tend

to have high complementary value when combined with existing technologies. Startups
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owning these patents likely favor sell-outs because the existence of synergies facilitates

increased value creation through business combinations, and higher value exit prices to

shareholders despite the need to share the gains with an acquirer.

Our second major finding is that technological traits have changed dramatically over

time. Most notable, we document an economy-wide decline in technological disruptive

potential that began after World War II. Because our central thesis is that startups with

disruptive potential are more likely to exit via IPO, it follows that the aggregate decline

in disruptive potential we document might also explain the recent aggregate decline in

IPOs and the surge in sell-outs. We estimate that roughly 20% of the decline in IPOs can

be attributable to changes in technological traits. Analogously, roughly 50% of the surge

in sell-outs can be explained by these same variables.
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Figure I: Example of a Google Patent page
This figure shows the structure of a Google Patent page. The depicted patent is 6,285,999, commonly
known as PageRank. Available at https://patents.google.com/patent/US6285999.
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Figure II: Time Series of Aggregate Disruptive Potential
This figure reports the evolution of Disruptive Potential for the aggregate patent corpus from 1930 to
2010. Disruptive Potential is defined at the patent level in Section III.B and Equation 2. Disruptive
Potential (Established) and Disruptive Potential (New) are defined at the patent level in Equations 5 and
6, respectively. To compute the aggregate stocks, we first compute the sum of each of the patent-level
characteristics for patents applied for in a given quarter. We then compute a rolling depreciated sum of
the prior 20 quarters, using a 5% quarterly rate of depreciation. Finally, we normalize the rolling stock
by the number of patents applied for in the 20 prior quarters. The underlying patent-level measures are
winsorized at 1/99% level annually. All series are reported as four quarter moving averages.
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Figure III: Trends in Aggregate IPOs and Acquisitions
This figure reports the evolution between 1980 and 2010 the quarterly number of IPOs in the left panel
and acquisitions in the middle panel. We obtain data on IPOs from Jay Ritter’s website, and exclude
non-operating companies, as well as IPOs with an offer price lower than $5 per share, unit offers, small
best effort offers, bank and savings and loans IPOs, natural resource limited partnerships, companies not
listed in CRSP within 6 month of their IPO, and foreign firms’ IPOs. Data on acquisitions are from the
Thomson Reuters SDC Platinum Database, and include all domestic completed acquisitions (of private
or public firms) coded as a merger, acquisition of majority interest, or acquisition of assets giving the
acquirer a majority stake. For comparison, we include Disruptive Potential (from Figure II) over the
same period in the right panel. All series are reported as four quarter moving averages.
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Figure IV: VC-Backed Startups: Disruptive Potential and Exit Trends
This figure compares trends among the startup sample to aggregate data. Panel A reports Disruptive
Potential of patents held by VC-backed startups from 1980 to 2010 (solid line) and of all patents (dashed
line). Disruptive Potential is defined at the patent level in Section III. The time series are constructed
from the patent-level data as in Figure II. Panel B reports in the solid lines the percentage of startups
that exit in the sample during the year via IPO or sell-out (left axis). The dashed lines report aggregate
trends on IPOs and sell-outs of private targets and are reported in dashed lines as a fraction of lagged real
GDP (right axis). Real GDP is in units of $100m. Aggregate data on IPOs and sell-outs are described
in Figure III, except that in Panel B below, only private targets are included for sell-outs. All series are
reported as four quarter moving averages.
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Table I: Changes in Patent Word Usage: Examples
This table reports, for five illustrative years between 1930 and 2010, how innovation has changed based
on the text within patents. Panel A lists the ten words that have the largest year-over-year increase in
use across all patents. Panel B lists the ten words that have the largest year-over-year decrease in use
across all patents.

Panel A: Words with largest increase in use

1935 1975 1985 1995 2005

cent bolts laser polypeptides broadband
leaves effort japanese deletion intervening
axes lithium wavelength clones candidates
packing user publication polypeptide click
column describes blood peptides configurable
lead exemplary infrared recombinant luminance
coupled entitled polymer cdna abstract
notch typically mount nucleic acquiring
copper phantom optical transcription telecommunications
chain exploded comparative plasmid gamma

Panel B: Words with largest decline in use

1935 1975 1985 1995 2005

chambers assistant sulfuric cassette vegetable
crank inventor collection ultrasonic acyl
boiling inventors crude machining spiral
agent firm stock abutment gram
seats priority dioxide tape wedge
yield john evident sand gelatin
reducing foreign hydrocarbon packing crude
engine sept shut bottle oven
bell june circuitry slidable maybe
film corporation oxides insofar drilling
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Table II: Summary Statistics: Patent-level Sample
This table presents summary statistics for patent applications between 1930 and 2010 in Panel A and for
the quarterly sample of venture-backed startups between 1980 and 2010 in Panel B. Startups are in the
sample from their founding date until the quarter of their final outcome. Note that some startups remain
private at the end of the sample period. The startup sample is further detailed in Section V.D. Disruptive
Potential is defined at the patent level in Section III.B and at the startup-quarter level in Section III.D.
Remaining variables are defined in Table A1. P25 and P75 denote the 25th and 75th percentiles. The
underlying patent level measures are winsorized at the 1/99% level annually.

Panel A: Patent sample

N Mean SD P25 Median P75

Disruptive Potential 6,594,248 1.64 1.81 0.51 1.27 2.34
Tech Breadth 6,594,143 0.42 0.22 0.24 0.47 0.60
Private Similarity 6,594,248 0.15 0.05 0.12 0.15 0.18
LI Similarity 6,594,248 0.11 0.05 0.06 0.09 0.13
Foreign Similarity 6,594,248 0.15 0.06 0.11 0.14 0.19
Originality 5,335,987 0.40 0.33 0.00 0.46 0.67
# of Cites 6,595,226 1.58 2.91 0.00 1.00 2.00
KPSS Value 1,781,386 9.75 23.69 0.73 3.25 9.16
mCD 4,245,716 0.56 1.83 0.00 0.00 0.38

Panel B: Startup-quarter sample

N Mean SD P25 Median P75

Disruptive Potential 347,929 0.66 1.14 0.00 0.00 0.98
Tech Breadth 347,929 0.13 0.18 0.00 0.01 0.27
Private Similarity 347,929 0.06 0.06 0.00 0.06 0.11
LI Similarity 347,929 0.04 0.05 0.00 0.03 0.07
Foreign Similarity 347,929 0.05 0.06 0.00 0.04 0.09
Log(1+Firm Age) 347,929 3.07 1.15 2.40 3.18 3.76
No PatApps[q-1,q-20] 347,929 0.47 0.50 0.00 0.00 1.00
Log(1+PatApps[q-1,q-20]) 347,929 0.79 0.97 0.00 0.69 1.39
Log(MTB) (q-2) 347,929 0.15 0.08 0.11 0.15 0.19
MKT Return [q-2,q-1] 347,929 0.01 0.13 -0.08 0.02 0.09
Q4 347,929 0.25 0.43 0.00 0.00 0.00
Originality 347,929 0.16 0.20 0.00 0.00 0.31
Log(1+Cites) 347,929 0.54 0.70 0.00 0.00 1.02
IPO rate (x100) 347,929 0.42 6.43 0.00 0.00 0.00
Sell-Out rate (x100) 347,929 0.73 8.50 0.00 0.00 0.00
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Table III: Technological Disruptive Potential: Citation Patterns and Economic
Value
This table presents regressions on a sample of patents granted between 1930 and 2010. Independent
variables are defined in Table A1, while dependent variables are defined in Section III. To facilitate
interpretation, all controls are standardized. All measures are winsorized at the 1/99% level annually.
LI Similarity and Foreign Similarity are orthogonalized relative to Private Similarity. Fixed effects are
included based on a patent’s grant year (cohort) and technology category. Adjusted R2 is reported as
a percentage. Standard errors are clustered by the patent’s grant year and are reported in parentheses.
The symbols ***,**, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Log(1+Cites) mCD Log(1+KPSS Value)
(1) (2) (3)

Panel A: Cohort fixed effects, no controls

Disruptive Potential 0.035*** 0.104*** 0.080***
(6.92) (4.35) (7.48)

Observations 6,033,343 4,245,630 1,697,481
R2 (%) 10.0 27.4 6.4

Panel B: Cohort-by-technology fixed effects, no controls

Disruptive Potential 0.033*** 0.078*** 0.054***
(8.93) (4.62) (5.99)

Observations 6,033,292 4,245,585 1,697,455
R2 (%) 15.9 30.0 12.1

Panel C: Cohort-by-technology fixed effects, with controls

Disruptive Potential 0.030*** 0.070*** 0.033***
(8.88) (4.40) (4.08)

Tech Breadth -0.021*** -0.031*** -0.028**
(-6.30) (-4.17) (-2.38)

Private Similarity 0.106*** 0.064** 0.087***
(15.87) (2.29) (6.53)

LI Similarity 0.128*** 0.061* 0.363***
(16.85) (1.79) (12.00)

Foreign Similarity -0.064*** 0.022 -0.534***
(-10.64) (0.85) (-11.33)

Observations 6,033,230 4,245,584 1,697,435
R2 (%) 17.2 30.1 18.9
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Table IV: Technological Disruptive Potential: Examples of Important Patents
This table reports the percentiles of various patent-level characteristics for important patents. Percentiles
are cohort-adjusted, i.e., we remove year fixed effects before computing percentiles. In Panel A, we con-
sider twelve unambiguous breakthrough patents. Patents before 1960 are from the USPTO’s “Significant
Historical Patents of the United States” and more recent patents are noted for the revenue they generated.
In Panel B, we report summary statistics for the percentiles of a more comprehensive list of 101 patents
between 1930 and 2010 identified by Kelly, Papanikolaou, Seru, and Taddy (2019) (henceforth, KPST)
based on several on-line lists of “important” patents. These patents are listed in detail in Table A2.
The percentiles for the KPST measure are taken directly from their Table A.6. All other variables are
defined in Table A1. “Brdth” and “Orig” are short for Tech Breadth and Originality, respectively. The
underlying patent-level measures are winsorized at 1/99% level annually.

Patent Year DP Cites KPSS mCD KPST Brth Orig Note

Panel A: Examples of Important Patents

1,773,980 1930 0.88 0.7 0.98 0.64 TV
1,848,389 1932 0.73 0.68 0.94 0.3 Helicopter
2,404,334 1946 0.59 0.97 0.23 0.8 Jet Engine
2,524,035 1950 0.68 0.96 0.85 0.75 0.45 0.89 Transistor
2,569,347 1951 0.72 0.96 0.79 0.63 0.48 0.72 Junction Transistor
2,668,661 1954 1 0.87 0.8 0.98 0.85 0.83 Modern digital computer
2,835,548 1958 0.75 0.79 0.85 1 0.97 Satellite
2,929,922 1960 0.91 0.97 0.9 0.89 0.61 Laser
4,237,224 1980 0.96 0.98 0.99 1 0.62 Cohen/Boyer patent
4,399,216 1983 1 0.99 0.99 1 0.68 0.26 “Axel” patent
4,681,893 1987 0.7 1 0.58 0.99 N/A 0.3 0.4 Lipitor patent
6,285,999 2001 0.92 1 0.98 0.99 0.13 0.74 PageRank (Google)

Panel B: Summary of All Important Patents

Average: 0.71 0.75 0.68 0.61 0.84 0.53 0.55
Median: 0.81 0.80 0.75 0.81 0.90 0.54 0.62
Std error: (0.03) (0.02) (0.04) (0.06) (0.02) (0.03) (0.04)
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Table VI: The Determinants of Startups’ Exits - Baseline
This table presents cross-sectional tests relating startups’ ex ante technological traits to their exit. The
outcomes we consider are IPO and sell-out (acquisition). The sample is a quarterly panel of VC-backed
startups from 1980-2010 and is described in Section III.D. Columns (1)-(2) use a competing risk hazard
model and columns (3)-(4) use an OLS linear probability model. To facilitate interpretation, coefficients
for OLS estimates report the incremental % change in a given outcome. Independent variables are lagged
one quarter unless explicitly noted and all controls are standardized for convenience, except for the
Q4 and No PatApps[q-1,q-20] dummy variables. All variables are defined in Table A1. LI Similarity
and Foreign Similarity are orthogonalized relative to Private Similarity. The underlying patent-level
measures are winsorized at the 1/99% level annually. Technology fixed effects are based on the most
common NBER-technology category across a firm’s patents. Location fixed effects are based on the state
reported in VentureXpert. Adjusted R2 is reported as a percentage. Standard errors are clustered by
startup and are reported in parentheses. The symbols ***,**, and * indicate statistical significance at
the 1%, 5%, and 10% levels, respectively.

Competing Risk Hazard OLS

IPO Sell-Out IPO Sell-Out
(1) (2) (3) (4)

Disruptive Potential 0.252*** -0.188*** 0.082*** -0.067***
(13.09) (-7.55) (4.04) (-3.42)

Tech Breadth 0.510*** -0.210*** 0.091*** -0.140***
(10.02) (-5.50) (3.28) (-4.39)

Private Similarity 0.127* -0.479*** 0.037 -0.433***
(1.70) (-8.62) (1.06) (-9.47)

LI Similarity 0.248*** -0.005 0.056* -0.059
(4.58) (-0.12) (1.80) (-1.64)

Foreign Similarity -0.056 -0.003 -0.017 0.059**
(-1.42) (-0.11) (-0.93) (2.39)

No PatApps[q-1,q-20] 1.648*** -2.172*** 0.350*** -1.657***
(10.75) (-22.17) (5.11) (-15.09)

Log(1+PatApps[q-1,q-20]) 0.327*** -0.056** 0.175*** -0.087***
(9.65) (-2.11) (7.25) (-2.97)

Log(MTB) (q-2) 0.133*** 0.162*** 0.151*** 0.044
(5.15) (8.94) (4.20) (0.82)

MKT Return [q-2,q-1] 0.341*** 0.004 0.046*** 0.036*
(11.92) (0.16) (3.55) (1.79)

Q4 -0.059 0.114** 0.137*** 0.370***
(-0.77) (2.05) (2.86) (5.75)

Originality -0.125*** -0.175*** -0.028 -0.178***
(-3.11) (-6.01) (-1.44) (-7.34)

Log(1+Cites) 0.171*** 0.118*** 0.075*** 0.152***
(3.95) (3.96) (3.64) (5.38)

Year FE No No Yes Yes
Technology FE No No Yes Yes
Location FE No No Yes Yes
Firm Age FE No No Yes Yes
Firm Cohort FE No No Yes Yes

Observations 346,490 345,403 342,146 342,146
R2 (%) N/A N/A 0.5 0.6
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Table VII: Determinants of Startups’ Exits - Financing
This table presents cross-sectional tests relating startups’ ex ante technological traits to their exit. Each
of the models repeats the corresponding model from Table VI, but adds endogenous financing controls.
log(CumVCFunding) is the log of cumulative VC funding the firm receives between its founding and
q − 1. No Funding[q-1,q-20] is a control equal to one if the firm has not received funding in the prior 20
quarters. For brevity, we only report the new financing controls and Disruptive Potential. To facilitate
interpretation, coefficients for OLS estimates report the incremental % change in a given outcome, and
Disruptive Potential is standardized. Independent variables are lagged one quarter unless explicitly noted.
The underlying patent-level measures are winsorized at the 1/99% level annually. Adjusted R2 is reported
as a percentage. Standard errors are clustered by startup and are reported in parentheses. The symbols
***,**, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Competing Risk Hazard OLS

IPO Sell-Out IPO Sell-Out
(1) (2) (3) (4)

Disruptive Potential 0.263*** -0.170*** 0.075*** -0.077***
(13.66) (-6.82) (3.70) (-4.00)

log(CumVCFunding) 0.074*** 0.138*** 0.059*** 0.119***
(4.56) (10.18) (8.83) (15.01)

No Funding[q-1,q-20] -0.927*** -2.508*** -0.126** 0.130**
(-5.35) (-9.79) (-2.22) (1.99)

Controls Yes Yes Yes Yes
Year FE No No Yes Yes
Technology FE No No Yes Yes
Location FE No No Yes Yes
Firm Age FE No No Yes Yes
Firm Cohort FE No No Yes Yes

Observations 346,490 345,403 342,146 342,146
R2 (%) N/A N/A 0.7 0.8
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Table VIII: The Determinants of Startups’ Exits - Dynamic Responses
This table presents dynamic cross-sectional tests relating startups’ ex ante technological traits to their
exit over several horizons. In Panel A, column 1 repeats the OLS model examining IPO exits from column
3 in Table VI. Columns 2-6 subsequently replace the one-period ahead IPO exit indicator with longer
horizons. We repeat this analysis for sell-outs in Panel B. Panel C examines whether a firm is still private
(i.e. no IPO, or sell-out). In all models, the sample, independent variables, and coefficient interpretation
are the same as the OLS models in Table VI. Independent variables are standardized for convenience.
LI Similarity and Foreign Similarity are orthogonalized relative to Private Similarity. For brevity, the
control variables and fixed effects are omitted. Standard errors are clustered by startup and are reported
in parentheses. The symbols ***,**, and * indicate statistical significance at the 1%, 5%, and 10% levels,
respectively.

Exit within next: Qtr Year 2 Years 3 Years 4 Years 5 Years
(1) (2) (3) (4) (5) (6)

Panel A: Exit by IPO

Disruptive Potential 0.082*** 0.299*** 0.420*** 0.424** 0.472** 0.466**
(4.04) (3.88) (3.14) (2.49) (2.34) (2.07)

Tech Breadth 0.091*** 0.362*** 0.714*** 0.973*** 1.167*** 1.229***
(3.28) (3.54) (3.85) (3.90) (3.81) (3.52)

Private Similarity 0.037 0.120 0.215 0.261 0.492 0.623
(1.06) (0.94) (0.95) (0.87) (1.34) (1.52)

LI Similarity 0.056* 0.182 0.287 0.265 0.313 0.270
(1.80) (1.57) (1.40) (0.95) (0.91) (0.69)

Foreign Similarity -0.017 -0.045 -0.029 0.007 -0.045 -0.089
(-0.93) (-0.64) (-0.22) (0.04) (-0.21) (-0.36)

Panel B: Exit by Sell-Out

Disruptive Potential -0.067*** -0.191** -0.145 -0.055 0.011 0.089
(-3.42) (-2.46) (-0.92) (-0.25) (0.04) (0.28)

Tech Breadth -0.140*** -0.600*** -1.086*** -1.501*** -1.899*** -2.056***
(-4.39) (-4.85) (-4.60) (-4.43) (-4.43) (-4.10)

Private Similarity -0.433*** -1.468*** -2.123*** -2.052*** -1.485** -0.628
(-9.47) (-8.23) (-6.24) (-4.28) (-2.53) (-0.93)

LI Similarity -0.059 -0.164 -0.012 0.303 0.652 1.297**
(-1.64) (-1.14) (-0.04) (0.75) (1.29) (2.20)

Foreign Similarity 0.059** 0.158 0.059 -0.219 -0.460 -0.924**
(2.39) (1.60) (0.31) (-0.79) (-1.30) (-2.24)

Panel C: Still Private

Disruptive Potential -0.056* -0.267** -0.564*** -0.745*** -0.859*** -0.880**
(-1.94) (-2.41) (-2.77) (-2.76) (-2.70) (-2.54)

Tech Breadth 0.044 0.147 0.175 0.223 0.402 0.516
(0.99) (0.88) (0.57) (0.53) (0.79) (0.89)

Private Similarity 0.359*** 1.301*** 2.049*** 2.235*** 1.778*** 1.305*
(5.98) (5.82) (5.01) (4.04) (2.69) (1.77)

LI Similarity 0.045 0.137 0.092 -0.038 -0.311 -0.842
(0.90) (0.73) (0.26) (-0.08) (-0.54) (-1.30)

Foreign Similarity -0.088*** -0.279** -0.409* -0.390 -0.392 -0.161
(-2.65) (-2.20) (-1.73) (-1.19) (-0.98) (-0.36)
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Table IX: The Determinants of Startups’ Exits - Decomposition
This table presents cross-sectional tests relating startups’ ex ante technological traits to their exit. Each
of the models repeats the corresponding model from Table VI, but replaces the main variable Disruptive
Potential with a decomposition by focusing on a subset of words in the patent corpus for each year.
Disruptive Potential (Established) is defined in Equation 5 based on words that are at least ten years
old in a given year. Disruptive Potential (New) is defined in Equation 6 based on words that less than
ten years old in a given year. For brevity, we only report the coefficients on the decomposed variables.
To facilitate interpretation, coefficients for OLS estimates report the incremental % change in a given
outcome, and Disruptive Potential (Established) and Disruptive Potential (New) are standardized. Inde-
pendent variables are lagged one quarter unless explicitly noted. The underlying patent-level measures
are winsorized at the 1/99% level annually. Adjusted R2 is reported as a percentage. Standard errors
are clustered by startup and are reported in parentheses. The symbols ***,**, and * indicate statistical
significance at the 1%, 5%, and 10% levels, respectively.

Competing Risk Hazard OLS

IPO Sell-Out IPO Sell-Out
(1) (2) (3) (4)

Disruptive Potential (Established) 0.306*** -0.146*** 0.116*** -0.038*
(10.20) (-6.47) (5.54) (-1.78)

Disruptive Potential (New) 0.022 -0.066*** -0.014 -0.036**
(0.99) (-2.90) (-0.90) (-1.97)

Controls Yes Yes Yes Yes
Year FE No No Yes Yes
Technology FE No No Yes Yes
Location FE No No Yes Yes
Firm Age FE No No Yes Yes
Firm Cohort FE No No Yes Yes

Observations 346,490 345,403 342,146 342,146
R2 (%) N/A N/A 0.5 0.6
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Table X: Startup-Level Validity Tests: Post-IPO competition
This table presents validity tests based on a sub-sample of VC-backed startups that go public after 1997
where we are able to merge in both public firm identifiers (GVKEY) and obtain data on the product
space of the firm (on startups’ IPO year). The dependent variables HHI and TSimm, from Hoberg and
Phillips (2016), are text-based measures of industry concentration and total similarity among a firm’s
public peers, respectively. Product Mkt Fluidity is from Hoberg, Phillips, and Prabhala (2014). All
variables are defined in Table A1 and the underlying patent-level measures are winsorized at the 1/99%
level annually. We include year fixed effects for the year of IPO. Adjusted R2 is reported as a percentage.
Standard errors are heteroskedastic robust and are reported in parentheses. The symbols ***,**, and *
indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Product Mkt
HHI Log(TSimm) Fluidity
(1) (2) (3)

Disruptive Potential -0.012** 0.073** 0.245**
(-2.18) (2.10) (2.16)

Year FE Yes Yes Yes

Observations 523 523 524
R2 (%) 1.7 1.7 2.5
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Table XI: Explaining Aggregate IPO and Sell-Out Rates
This table presents the out-of-sample performance of predictive models of startups’ exit using variables
standard in the IPO and acquisition literature (the “Base” model) and a model which augments the
“Base” model with the new text-based technological variables (the “Text” model). Panel A examines
IPO exits and Panel B examines sell-outs. In a given test (column 1), we estimate a Fama and MacBeth
(1973) regression quarter-by-quarter where the dependent variable is a dummy indicating an IPO exit
(Panel A) or indicating a sell-out exit (Panel B) based on the horizon listed in column 2 (ranging from one
quarter to three years) and using the ex ante measurable independent variables in Table VI. This model
is fitted using the early part of our sample, which begins in 1980 and ends before the out-of-sample period
(noted in column 3). These fitted Fama-MacBeth coefficients from the early period are then used in the
out-of-sample post period (listed in column 3) to predict the average IPO rate and sell-out rate. These
predicted exit rates are then compared to the actual rates to compute the fraction of the disappearing
IPOs or surging sell-outs anomaly that is explained by either the “Base” model or the “Text” model as
noted in columns (5) to (8). Column 9 reports the percentage of each anomaly that cannot be explained
by the base model that is explained by the Text model. All probabilities in columns (4)-(8) are reported
as percentage points.

Pred- True Predicted
iction Post Exit Exit Rate Error Text

Test Horizon Period Rate Base Text Base Text Impr
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: IPO Exits

1 1Q [1996,2010] 0.33 0.84 0.75 0.50 0.42 16%
2 1Q [1998,2010] 0.27 0.85 0.76 0.58 0.49 16%
3 1Q [2000,2010] 0.22 0.85 0.75 0.63 0.53 16%
4 1Y [1996,2010] 1.27 3.34 2.89 2.07 1.63 21%
5 2Y [1996,2010] 2.45 6.50 5.59 4.05 3.15 22%
6 3Y [1996,2010] 3.56 9.46 8.17 5.90 4.60 22%

Panel B: Sell-Out Exits

7 1Q [1996,2010] 0.86 0.60 0.75 -0.25 -0.11 57%
8 1Q [1998,2010] 0.91 0.63 0.80 -0.27 -0.10 62%
9 1Q [2000,2010] 0.95 0.68 0.87 -0.27 -0.08 71%
10 1Y [1996,2010] 3.49 2.52 2.96 -0.98 -0.54 45%
11 2Y [1996,2010] 7.19 5.30 5.94 -1.88 -1.25 34%
12 3Y [1996,2010] 10.96 8.21 8.93 -2.75 -2.03 26%
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Table XII: Explaining Aggregate IPO Rates (Small vs Big IPOs)
This table presents the out-of-sample performance of predictive models of startups’ exit using variables
standard in the IPO and acquisition literature (the “Base” model) and a model which augments the
“Base” model with the new text-based technological variables (the “Text” model). Panel A examines
small IPO exits and Panel B big IPO exits. We define an IPO as “small” if its pre-IPO sales are below
the median in our sample ($25 million), and as “large” if its pre-IPO sales exceeds that amount. In
a given test (column 1), we estimate a Fama and MacBeth (1973) regression quarter-by-quarter where
the dependent variable is a dummy indicating an IPO exit (Panel A) or indicating a sell-out exit (Panel
B) based on the horizon listed in column 2 (ranging from one quarter to three years) and using the
ex ante measurable independent variables in Table VI. This model is fitted using the early part of our
sample, which begins in 1980 and ends before the out-of-sample period (noted in column 3). These fitted
Fama-MacBeth coefficients from the early period are then used in the out-of-sample post period (listed in
column 3) to predict the average IPO rate and sell-out rate. These predicted exit rates are then compared
to the actual rates to compute the fraction of the disappearing IPOs or surging sell-outs anomaly that
is explained by either the “Base” model or the “Text” model as noted in columns (5) to (8). Column 9
reports the percentage of each anomaly that cannot be explained by the base model that is explained by
the Text model. All probabilities in columns (4)-(8) are reported as percentage points.

Pred- True Predicted
iction Post Exit Exit Rate Error Text

Test Horizon Period Rate Base Text Base Text Impr
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Small IPO Exits

7 1Q [1996,2010] 0.15 0.35 0.28 0.21 0.13 36%
8 1Q [1998,2010] 0.12 0.38 0.29 0.26 0.18 32%
9 1Q [2000,2010] 0.08 0.38 0.30 0.30 0.21 28%
10 1Y [1996,2010] 0.55 1.45 1.02 0.90 0.47 48%
11 2Y [1996,2010] 1.06 2.86 2.10 1.80 1.04 42%
12 3Y [1996,2010] 1.53 4.17 3.22 2.65 1.69 36%

Panel B: Big IPO Exits

1 1Q [1996,2010] 0.13 0.35 0.38 0.22 0.25 -13%
2 1Q [1998,2010] 0.11 0.35 0.38 0.24 0.27 -11%
3 1Q [2000,2010] 0.10 0.34 0.36 0.24 0.27 -9%
4 1Y [1996,2010] 0.51 1.36 1.41 0.86 0.91 -6%
5 2Y [1996,2010] 0.99 2.64 2.54 1.65 1.55 6%
6 3Y [1996,2010] 1.46 3.86 3.59 2.39 2.12 11%
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Table XIII: Explaining Aggregate IPO and Sell-Out Rates (Stable vs Fluid
Markets)
This table presents the out-of-sample performance of predictive models of startups’ exit with variables
standard in the IPO and acquisition literature (the “Base” model) and a model which augments the
“Base” model with the new text-based technological variables (the “Text” model). Panel A examines
IPO exits and Panel B examines sell-outs. The procedure is analogous to that described in Table XI,
except each test is repeated for two sub-samples: Stable Markets and Fluid Markets, which are defined
in Section VII.C. We omit the model-implied out-of-sample probabilities to conserve space.

Stable Market Subsample Fluid Market Subsample

Pred. Post True Base Text Text True Base Text Text
Test Horizon Period Rate Error Error Impr Rate Error Error Impr
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Panel A: IPO Exits

1 1Q [1996,2010] 0.30 0.41 0.31 26% 0.37 0.62 0.67 -7%
2 1Q [1998,2010] 0.26 0.45 0.33 27% 0.29 0.75 0.79 -5%
3 1Q [2000,2010] 0.24 0.44 0.32 29% 0.20 0.86 0.89 -4%
4 1Y [1996,2010] 1.14 1.69 1.29 24% 1.42 2.57 2.29 11%
5 2Y [1996,2010] 2.20 3.32 2.60 22% 2.74 5.02 4.27 15%
6 3Y [1996,2010] 3.23 4.75 3.68 22% 3.96 7.38 6.51 12%

Panel B: Sell-Out Exits

7 1Q [1996,2010] 0.85 -0.16 -0.04 73% 0.86 -0.37 -0.21 44%
8 1Q [1998,2010] 0.89 -0.17 -0.04 75% 0.93 -0.40 -0.19 52%
9 1Q [2000,2010] 0.91 -0.16 -0.01 93% 0.98 -0.40 -0.17 57%
10 1Y [1996,2010] 3.43 -0.59 -0.34 43% 3.55 -1.46 -0.79 46%
11 2Y [1996,2010] 6.97 -1.05 -0.89 15% 7.39 -2.90 -1.56 46%
12 3Y [1996,2010] 10.52 -1.44 -1.43 1% 11.38 -4.32 -2.32 46%
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Table A1: Variable Definitions

Patent-Level Variables

Disruptive Potential See Equation 2 and Section III.B.
Tech Breadth See Equation 3 and Section III.C.
LI Similarity See Equation 4 and Section III.C.
Private Similarity Similar to LI Similarity. See Section III.C.
Foreign Similarity Similar to LI Similarity. See Section III.C.
KPSS Value From Kogan, Papanikolaou, Seru, and Stoffman (2016).
# of Cites Number of citations received in the first five years after publication by

the USPTO. Citations up to December 31, 2013.
mCD From Funk and Owen-Smith (2016).
Originality The originality of a focal patent is defined as 1 minus the HHI of the

technology fields of the patents cited by the focal patent (Trajtenberg,
Henderson, and Jaffe (1997)). We use the adjustment given in Hall,
Jaffe, and Trajtenberg (2001) to reduce bias for patents that contain
few backward citations. We convert U.S. Patent Classifications to the
NBER technology codes so that Tech Breadth and Originality are based
on the same granularity of technology classifications.

Disruptive Potential (Established) See Equation 5 and Section III.C.
Disruptive Potential (New) See Equation 6 and Section III.C.

Startup-Quarter Variables

Disruptive Potential The depreciated sum of patent-level Disruptive Potential for patents
the firm applied for over the prior 20 quarters. Quarterly depreciation
is 5%. We normalize the depreciated sum by the number of patents the
startup applied for. See Section III.D for more.

Tech Breadth Converted to startup-quarter like Disruptive Potential.
Private Similarity Converted to startup-quarter like Disruptive Potential.
LI Similarity Converted to startup-quarter like Disruptive Potential.
Foreign Similarity Converted to startup-quarter like Disruptive Potential.
Log(1+Cites) Log of the stock of citations. Citations for a startup-quarter is the sum

of the # of Cites (patent-level variable defined above) for patents the
startup applies for in the quarter. Note that this is forward-looking.
The stock is computed using a quarterly depreciation of 5%.

Originality Converted to startup-quarter like Disruptive Potential.
No PatApps[q-1,q-20] Dummy variable equal to one if the startup has not applied for a patent

(which was eventually granted) during the last 20 quarters.
Log(1+PatApps[q-1,q-20]) The # of (granted) patent applications in the last 20 quarters.
IPO One if the startup goes public in the quarter, zero before.
Sell-out One if the startup is acquired in the quarter, zero before.
Disruptive Potential (Established) Converted to startup-quarter like Disruptive Potential.
Disruptive Potential (New) Converted to startup-quarter like Disruptive Potential.

Quarterly variables

Log(MTB) (q-2) Aggregate market-to-book is computed quarterly using all firms in the
CRSP-Compustat database. We sum each subcomponent of MTB
across all firms, then compute MTB = (at − ceq + mve − txdb)/at
as defined in Kaplan and Zingales (1997).

MKT Return [q-2,q-1] From Ken French’s daily factor file using geometric compounding.
Q4 One if t− 1 is the fourth quarter (and t is the first quarter), else zero.
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Table A2: Percentiles of various statistics for a sample of important patents
The patents below are the 1930-2010 subset of key important patents listed in Kelly, Papanikolaou, Seru,
and Taddy (2019) (henceforth, KPST) over which the textual measures in this paper are defined. The
percentiles for the KPST measure are taken directly from their Table A.6. Remaining variables are
defined in Table A1. “Brdth” and “Orig” are short for Tech Breadth and Originality, respectively. The
underlying patent-level measures are winsorized at 1/99% level annually. Percentiles are cohort-adjusted,
i.e., we remove year fixed effects before computing percentiles.

Grant Dsrpt Priv LI Frgn
Patent Year Potent Cites KPSS mCD KPST Brdth Orig Simm Simm Simm

Panel A: Summary statistics of percentiles in Panel B

Average: 0.71 0.75 0.68 0.61 0.84 0.53 0.55 0.52 0.63 0.57
Median: 0.81 0.80 0.75 0.81 0.90 0.54 0.62 0.51 0.69 0.59
Std error: (0.03) (0.02) (0.04) (0.06) (0.02) (0.03) (0.04) (0.03) (0.03) (0.03)

Panel B: Percentiles of various measures for breakthrough patents

1,773,079 1930 0.10 0.70 0.95 0.69 0.91 0.68 0.85
1,773,080 1930 0.50 0.70 0.95 0.31 0.18 0.28 0.37
1,773,980 1930 0.88 0.70 0.98 0.64 0.49 0.97 0.91
1,800,156 1931 0.86 0.70 0.97 0.47 0.83 0.59 0.86
1,821,525 1931 0.48 0.68 0.55 0.98 0.96 0.96 0.92
1,835,031 1931 0.83 0.68 0.75 0.90 0.96 0.60 0.96 0.80
1,848,389 1932 0.73 0.68 0.94 0.30 0.94 0.79 0.89
1,867,377 1932 0.12 0.69 0.75 0.36 0.52 0.54 0.35
1,925,554 1933 0.88 0.68 0.92 0.83 0.20 0.72 0.59
1,929,453 1933 0.95 0.66 0.98 0.26 0.82 0.70 0.90
1,941,066 1933 0.78 0.68 0.93 0.74 0.19 0.97 0.86
1,948,384 1934 0.78 0.66 0.87 0.79 0.21 0.76 0.66
1,949,446 1934 0.50 0.66 0.55 0.31 0.83 0.57 0.48
1,980,972 1934 1.00 0.65 0.98 0.18 0.84 0.79 1.00
2,021,907 1935 0.60 0.67 0.89 0.99 0.28 0.82 0.65
2,059,884 1936 0.94 0.66 0.63 0.59 0.46 0.41 0.72 0.89
2,071,250 1937 0.98 0.67 0.84 0.89 0.30 0.97 0.91 1.00
2,087,683 1937 0.86 0.66 0.92 0.68 0.37 0.84 0.91
2,153,729 1939 1.00 0.65 0.96 0.16 0.67 0.73 1.00
2,188,396 1940 0.78 0.63 0.60 1.00 0.17 0.83 0.62 0.80
2,206,634 1940 0.93 0.65 0.98 0.57 0.68 0.71 0.97
2,230,654 1941 0.93 0.62 0.93 0.25 0.88 0.75 0.51
2,258,841 1941 0.38 0.56 0.23 0.88 0.72 0.52 0.83
2,292,387 1942 0.52 0.56 0.95 0.94 0.58 0.81 0.63
2,297,691 1942 0.14 0.62 0.62 0.87 0.67 0.69 0.76
2,329,074 1943 0.91 0.89 0.56 0.20 0.99 0.95 0.98
2,390,636 1945 0.18 0.95 0.79 0.57 0.08 0.14 0.33
2,404,334 1946 0.59 0.97 0.23 0.80 0.83 0.79 0.96
2,436,265 1948 0.37 0.95 0.74 0.39 0.26 0.76 0.75 0.66
2,451,804 1948 0.92 0.93 0.74 0.20 0.06 0.94 0.80 0.50
2,495,429 1950 0.85 0.96 0.21 0.86 0.92 0.39 0.71 0.32
2,524,035 1950 0.68 0.96 0.85 0.75 0.45 0.89 0.66 0.93 0.90
2,543,181 1951 0.74 0.96 0.63 0.32 0.61 0.93 0.85 0.71

Continued on next page
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Grant Dsrpt Priv LI Frgn
Patent Year Potent Cites KPSS mCD KPST Brdth Orig Simm Simm Simm

2,569,347 1951 0.72 0.96 0.79 0.63 0.48 0.72 0.79 0.99 0.95
2,642,679 1953 0.10 0.81 0.55 0.67 0.40 0.97 0.68 0.92
2,668,661 1954 1.00 0.87 0.80 0.98 0.85 0.83 0.01 0.01 0.01
2,682,050 1954 0.84 0.42 0.77 0.99 0.18 0.29 0.66 0.46
2,682,235 1954 0.88 0.63 0.60 0.99 0.10 0.23 0.15
2,691,028 1954 0.90 0.40 0.96 0.05 0.97 0.92 0.94
2,699,054 1955 0.21 0.97 0.97 0.23 0.77 0.98 0.97 0.98
2,708,656 1955 1.00 0.97 0.99 0.93 0.01 0.01 0.01
2,708,722 1955 0.91 0.97 0.78 0.44 0.99 0.08 0.75 0.43
2,717,437 1955 0.52 0.80 0.43 0.45 0.17 0.03 0.06 0.11
2,724,711 1955 0.99 0.39 0.82 0.06 0.46 0.75 0.78
2,752,339 1956 0.79 0.91 0.88 0.04 0.20 0.95 0.95 0.96
2,756,226 1956 0.89 0.60 0.71 0.18 0.98 0.34 0.63 0.86
2,797,183 1957 1.00 0.80 0.90 0.24 0.98 0.84 0.70 0.87
2,816,721 1957 0.59 0.95 0.72 0.46 0.42 0.52 0.72
2,817,025 1957 0.24 0.97 0.71 0.48 0.90 1.00 0.77
2,835,548 1958 0.75 0.79 0.85 1.00 0.97 0.65 0.42 0.55
2,866,012 1958 0.25 0.98 0.81 0.54 0.15 0.97 0.97 0.87
2,879,439 1959 0.72 0.97 0.77 0.80 0.55 0.44 0.82 0.55
2,929,922 1960 0.91 0.97 0.90 0.89 0.61 0.39 0.66 0.58
2,937,186 1960 0.99 0.58 0.89 0.12 0.13 0.99 0.97 1.00
2,947,611 1960 0.47 0.34 0.58 0.77 0.57 0.94 0.95 0.94
2,956,114 1960 0.45 0.90 0.71 0.74 0.55 0.39 0.98 0.98 0.90
2,981,877 1961 0.82 0.98 0.98 0.42 0.10 0.60 0.81 0.47
3,057,356 1962 0.89 0.97 0.93 0.54 0.09 0.55 0.94 0.58
3,093,346 1963 0.92 0.98 0.93 0.82 0.82 0.40 0.53 0.51
3,097,366 1963 0.28 0.55 0.41 0.99 0.73 0.86 0.62 0.77
3,118,022 1964 0.33 0.29 0.89 0.70 0.71 0.70 0.77 0.60
3,156,523 1964 0.05 0.46 0.85 0.25 1.00 0.86 0.83 0.98
3,174,267 1965 0.42 0.89 0.48 0.55 0.94 0.73 0.45 0.09 0.16
3,220,816 1965 0.06 0.54 0.85 0.42 0.09 0.03 0.14 0.09
3,287,323 1966 0.29 0.32 0.56 0.70 0.13 0.39 0.56 0.98 0.99
3,478,216 1969 0.42 0.80 0.84 0.37 0.62 0.35 0.64 0.46
3,574,791 1971 0.21 0.96 0.93 0.82 0.19 0.79 1.00 0.99
3,663,762 1972 0.38 0.97 0.84 0.78 0.68 0.26 0.13 0.40 0.09
3,789,832 1974 0.76 0.89 0.74 0.91 0.79 0.54 0.85 0.65
3,858,232 1974 0.32 0.98 0.97 0.71 0.78 0.95 0.58 0.94 0.77
3,906,166 1975 0.86 0.92 0.55 0.71 0.93 0.29 0.45 0.73 0.42
4,136,359 1979 0.71 0.76 0.89 0.97 0.69 0.63 0.98 0.83
4,229,761 1980 0.64 0.30 0.92 0.80 1.00 0.02 0.17 0.09
4,237,224 1980 0.96 0.98 0.99 1.00 0.62 0.05 0.22 0.14
4,363,877 1998 1.00 0.98 1.00
4,371,752 1983 0.96 0.99 0.95 0.94 0.30 0.28 0.72 0.99 0.82
4,399,216 1983 1.00 0.99 0.99 1.00 0.68 0.26 0.04 0.18 0.07
4,437,122 1993 1.00 0.61 0.99 1.00
4,464,652 1984 0.39 0.99 0.90 0.95 0.89 0.86 0.78 0.95 0.82 0.80
4,468,464 1984 1.00 0.92 0.16 1.00 0.58 0.04 0.16 0.12
4,590,598 1986 0.67 0.28 0.93 0.19 0.58 0.78 0.91 0.82 0.93 0.84
4,634,665 1987 0.96 0.78 0.97 0.99 0.53 0.05 0.18 0.07
4,683,195 1987 0.93 0.11 0.42 0.99 0.97 0.72 0.34 0.63 0.55
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Grant Dsrpt Priv LI Frgn
Patent Year Potent Cites KPSS mCD KPST Brdth Orig Simm Simm Simm

4,683,202 1990 0.14 0.38 0.99 0.94
4,736,866 1988 1.00 0.92 0.96 1.00 0.47 0.24 0.02 0.07 0.02
4,744,360 1988 0.80 0.83 0.21 0.91 0.68 0.18 0.55 0.64 0.57
4,799,258 1989 0.80 1.00 0.82 0.95 0.32 0.95 0.20 0.55 0.14
4,816,397 1989 1.00 0.94 0.48 0.98 0.60 0.99 0.20 0.41 0.23
4,816,567 1989 0.94 0.15 0.82 0.95 0.99 0.66 0.58 0.27 0.54 0.34
4,838,644 1989 0.78 0.88 0.85 0.92 0.95 0.20 0.82 0.93 0.87
4,889,818 1989 0.92 0.99 0.53 0.05 0.98 0.71 0.20 0.50 0.75 0.65
4,965,188 1990 0.93 0.99 0.49 0.02 0.98 0.75 0.20 0.40 0.72 0.61
5,061,620 1991 0.93 0.99 0.98 1.00 0.36 0.11 0.16 0.10
5,071,161 1991 0.48 1.00 0.94 0.67 0.94 0.20 0.68 0.47 0.39
5,108,388 1992 0.91 0.88 0.42 0.15 0.97 0.85 0.45 0.42 0.54 0.36
5,149,636 1992 0.66 0.48 0.24 0.99 0.52 0.19 0.05 0.18 0.07
5,179,017 1993 0.95 0.41 0.32 1.00 0.31 0.16 0.33 0.24
5,184,830 1993 0.62 0.94 0.31 0.98 0.34 0.43 0.84 0.88 0.89
5,194,299 1993 0.51 0.94 0.81 0.11 0.73 0.31 0.81 0.62 0.48 0.56
5,225,539 1993 0.98 0.99 0.99 1.00 0.52 0.10 0.26 0.17
5,272,628 1993 1.00 0.99 0.99 0.40 0.99 0.23 0.78 0.14 0.44 0.13
5,747,282 1998 1.00 0.45 0.08 0.95 0.97 0.15 0.39 0.30 0.32
5,770,429 1998 0.99 0.01 0.79 0.61 0.13 0.86 0.36 0.27 0.31
5,837,492 1998 1.00 0.01 0.04 0.83 0.28 0.39 0.39 0.40
5,939,598 1999 1.00 0.57 0.53 0.21 1.00 0.31 0.68 0.21 0.28 0.27
5,960,411 1999 0.87 1.00 1.00 0.22 1.00 0.03 0.85 0.18 0.50 0.09
6,230,409 2001 0.53 0.07 0.32 0.75 0.96 0.74 0.80 0.24 0.38
6,285,999 2001 0.92 1.00 0.98 0.99 0.13 0.74 0.13 0.47 0.12
6,331,415 2001 0.65 0.97 0.95 0.18 0.99 0.60 0.47 0.39 0.64 0.49
6,455,275 2002 0.99 0.45 0.04 0.98 0.13 0.12 0.45 0.40 0.46
6,574,628 2003 0.87 0.98 0.13 1.00 0.04 0.74 0.29 0.65 0.22
6,955,484 2005 0.07 0.75 0.79 0.78 0.68 0.63 0.63 0.24 0.35
6,985,922 2006 0.83 0.98 0.92 0.93 0.10 0.90 0.21 0.62 0.11
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This appendix contains additional material not reported in the paper to preserve space.

IA.A Defining the Entity Type of Patents’ Assignees

To classify if a patent is granted to (A) a private, domestic U.S. firm, (B) an international firm, or (C)
a U.S. public firm, we use the following procedure. First, we find all patents assigned to public firms.
We obtain the GVKEY for assignees from the NBER patent dataset, and augment this with Kogan,
Papanikolaou, Seru, and Stoffman (2016). We use all assignee links for the entire 1900-2013 period.
Also note that Kogan, Papanikolaou, Seru, and Stoffman (2016) contains PERMNO identifiers, which
we convert to GVKEY using a link table from WRDS. When the headquarters country from CRSP-
Compustat is available, we mark these firms as either international firms or U.S. public firms. Next,
we output the top 3,000 remaining assignees and manually classify the entity type. After these steps,
3,126,605 patents are classified as either U.S. public firms or foreign firms.

Second, we use information from the NBER classification of assignees and manual categorization to
remove patents assigned to governmental entities, research think tanks, or universities.

Third, we directly identify patents assigned to foreign firms when the last word in the assignee name
is an unambiguous foreign legal identifier, such as “GMBH”, “PLC”, and “Aktiengesellschaft”. We also
identify patents granted to foreign firms when the assignee is a firm (e.g. “CORP”) and USPTO data
indicates that the assignee is not domestic. This step identifies 898,797 patents granted to foreign firms.

Fourth, we classify entities as U.S. private domestic firms when the assignee is a firm (e.g. “CORP”)
and USPTO data indicates the assignee is domestic. Previous steps affirmatively prevent us from calling
a corporation a private domestic firm if the corporate is a public firm, a think tank, or international
corporation.

In total, we classify the entity type of 78% of all patents granted from 1900-2013. Moreover, during
our main analysis period (1980-2010), we are able to classify the assignee entity type for 92% of patent
applications. Of the 4,161,306 applied for in the main analysis period, 12% are private U.S. firms, 27%
are public U.S. firms, 41% are foreign firms, 8% are unclassified, and 11% are “other”.

IA.B Matching patents to VentureXpert

We download all data on firms receiving venture capital funding starting in 1970 and ending in 2013 from
VentureXpert using SDC Platinum. In addition to the dates of venture financing, we also download data
indicating each portfolio company’s founding date, its final resolution (as IPO, acquisition, or unresolved)
and date of resolution, the company’s name and the number of financing rounds it received.

Merging VentureXpert with the patent-level data requires a link between firms in the patent database
(the initial assignees) and firms in the VentureXpert database. We develop a fuzzy matching algorithm—
outlined below—to match firms in both databases using their names. The algorithm matches 532,660

1



patents granted between 1966 and 2013 to 19,324 VC-backed firms.35 96.6% of the patent matches and
90.7% of the VC-backed firms are matched via exact matches on the raw firm name in both datasets or
on a cleaned version of the firm name.

The matching procedure begins by standardizing assignee names in the patent dataset and in Ven-
ture VentureXpert, using a name standarization routine from Nada Wasi.36 This standardizes common
company suffixes and prefixes and produces stem names. We also modify this program to exclude all
information after a company suffix, as this is typically address information erroneously stored in the name
field by the USPTO. After standardizing the names, we use the following steps to match firms in the two
datasets:

1. We compare all original string names in each dataset, adjusted only to replace all uppercase
characters. If a single VC-backed firm is an exact match where the patent application is after the
firm’s founding date, we accept the match. This step matches 59,026 patents to VC-backed firms,
or 11% of the accepted matches.

2. For the remaining patents, we compare all cleaned string names in each dataset. If a single VC-
backed firm is an exact match where the patent application is after the firm’s founding date, we
accept the match. This step matches 455,456 patents to VC-backed firms, or 86% of accepted
matches.

3. For the remaining patents, we select matches using a fuzzy matching technique, with rules based
on random sampling and validation checks in a hold out sample. This step matches 18,178 patents
to VC-backed firms, or 3% of accepted matches. The steps are as follows:

(a) We compute string comparison scores by comparing all cleaned string names in each dataset
using several different string comparison functions. We do this three separate times, requiring
that (1) the first three characters are exact matches, (2) the first five characters are exact
matches, and (3) the first seven characters are exact matches. We then output a random
sample of patents for an RA to examine.

(b) The highest performing rule was a bi-gram match function with the restriction that the first
seven characters were equivalent in both the patent assignee and company name. For each
remaining patent, we keep as candidate matches any pair with equivalent name stems and
the highest bi-gram match above 75%.

(c) A random subset of suggested matches, in addition all borderline suggested matches, were
reviewed by hand.

As a result of this matching process, our patent-level database contains U.S. private firms that both
(A) have patents and (B) have received VC funding. Aside from imperfections in the matching process,
which could be material, this database is the universe of such firms.37 For each such firm, we have data
indicating its final outcome and text-based data indicating the details of the firm’s patents, and when
they were applied for and granted. This data allows us to examine both (A) potential drivers of VC
funding among firms that have patents but have not yet received funding, and (B) final resolutions of
private status as IPOs or acquisitions. Cross-sectional and time series examination of both form the basis
of our hypothesis testing.

35Firms can receive patents before VC funding.
36 http://www-personal.umich.edu/∼nwasi/programs.html
37Lerner and Seru (2017) note that using string matching to identify firms suffers from a limitation

when private firms have patents issued to legal entities with different names, such as subsidiaries or shell
companies meant to obfuscate the owner. This limitation can not be avoided, but is reduced for our
sample of interest. VC-backed private firms are typically small and thus are unlikely to have distinctly
named subsidiaries for research). Moreover, obfuscation is most often used by non-practicing entities,
often called patent trolls, which are unlikely to be a material number of firms in our 19,324 firm sample.
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IA.C Additional Results

1. Figure IA1 presents the evolution of text-based characteristics of the aggregate patent corpus from
1930 to 2010. The overall level of breadth steadily increases between 1930 to 1970. Beginning
in the mid-seventies, there is a twenty-year period of growth in overall patent breadth which
reaches a peak in the mid-nineties that was 20% above the 1970 level. In the most recent years,
however, there is a large decline in the breadth of U.S. patents, dropping by about 25% between
the mid-nineties and 2010. We also find an inverse U-shaped pattern in patent similarities over
the last century. All three measures steadily increase until the eighties, as the text in the average
U.S. patent during this period became increasingly similar to patents assigned to private U.S.
firms, foreign firms, and lead innovators. Beginning in the eighties, however, these trends reversed,
leading to marked declines in the similarity measures. The recent period is thus characterized
by patents becoming both more specialized (i.e., lower technological breadth) and more distinct
across firms.

2. Table IA1 presents information on the timing of key life events for startups in the main analysis
sample.

3. Table IA2 presents robustness tests of the main results on the determinants of startups’ exit from
Table VI.

4. Table IA3 presents regressions of startups’ financing on their technological characteristics.

5. Table IA4 presents subsample tests of the main OLS models on the determinants of startups’ exit
from Table VI. The subsamples are based on the date of the observation.
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Figure IA1: Trends in Aggregate Technology Variables
This figure reports characteristics of the aggregate patent corpus from 1930 to 2010. The variables are
defined at the patent level in Section III. To compute the aggregate stocks, we first compute the sum
of each of the patent-level characteristics for patents applied for in a given quarter. We then compute a
rolling depreciated sum of the prior 20 quarters, using a 5% quarterly rate of depreciation. Finally, we
normalize the rolling stock by the number of patents applied for in the 20 prior quarters. The underlying
patent-level measures are winsorized at 1/99% level annually. The series presented are four quarter
moving averages to smooth out seasonality.
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Table IA1: Years between keys events for ventured-backed Startups
This table presents information of key events for startups in the main analysis sample described in Panel
B of Table II and Section III.D. A startup’s first patent is based on the earliest application date for
(eventually) granted patents. Information on VC funding, timing, and exits are from VentureXpert, and
patenting information is from Google Patents.

Panel A: Events after the startup’s founding

Years between the startup’s
founding and event

Event N (startups) Mean SD P25 Median P75

First patent 9,167 4.42 10.76 0.75 2.25 5.75
VC funding 9,167 5.29 10.63 0.50 1.75 5.50
IPO 1,677 9.41 9.89 4.50 7.00 11.25
Acquisition 3,377 11.23 10.50 6.00 8.50 12.75

Panel B: Events after the startup’s first patent

Years between the startup’s
first patent and event

Event N (startup) Mean SD P25 Median P75

VC funding 9,167 0.87 7.78 -2.00 -0.25 2.50
IPO 1,677 3.10 8.45 -0.50 3.00 6.75
Acquisition 3,377 7.46 7.00 3.75 6.25 10.00
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Table IA2: Robustness of baseline results
This table presents robustness tests of the main results in Table VI. For brevity, we only report the
main coefficient on Disruptive Potential for each test. Each row corresponds to an alteration of the
main test. Aside from the listed alteration, each of the models within a row repeats the corresponding
model in the same column of Table VI. To facilitate interpretation, coefficients for OLS estimates report
the incremental % change in a given outcome, and Disruptive Potential is standardized and lagged one
quarter. The underlying patent-level measures are winsorized at the 1/99% level annually. Standard
errors are clustered by startup unless otherwise noted and are reported in parentheses. The symbols
***,**, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Competing Risk Hazard OLS

IPO Sell-Out IPO Sell-Out
Test # Test alteration (1) (2) (3) (4)

(1) Cluster standard errors by technology 0.252*** -0.188*** 0.081*** -0.067***
(13.56) (-8.90) (8.25) (-3.98)

(2) Cluster standard errors by year 0.252*** -0.188*** 0.081*** -0.067**
(7.84) (-5.78) (3.13) (-2.47)

(3) Cluster standard errors by firm cohort 0.252*** -0.188*** 0.081*** -0.067***
(8.54) (-5.97) (3.40) (-2.94)

(4) Only controls: No PatApps[q-1,q-20] 0.267*** -0.098*** 0.091*** -0.035*
and Log(1+PatApps[q-1,q-20]) (15.03) (-4.70) (4.73) (-1.94)

(5) Exclude Log(1+Cites) as control 0.267*** -0.167*** 0.093*** -0.045**
(14.26) (-6.98) (4.59) (-2.35)

(6) Recode sell-outs as “liquidations” if -0.183*** -0.053***
exit value below $25m (2009 dollars) (-6.76) (-2.88)

(7) Cross-section as of exit date 0.360*** -0.449*** 2.041** -2.041**
for IPO and Sell-Out firms (10.22) (-7.69) (2.41) (-2.41)

N=4,019 N=4,019 N=3,913 N=3,913
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Table IA3: The Determinants of Startups’ VC Funding
This table presents OLS cross-sectional tests relating a firm’s ex ante technological traits and its VC
financing. The outcomes we consider are the log of cumulative VC funding (Cum.Funds) the firm receives
between its founding and quarter q, and New Round, a binary variable that equals one if a firm receives a
new round of VC financing in quarter q. In all models, the sample, independent variables, and coefficient
interpretation are the same as the OLS models in Table VI. Independent variables are standardized for
convenience and lagged one quarter. LI Similarity and Foreign Similarity are orthogonalized relative to
Private Similarity. For brevity, control variables are omitted. Adjusted R2 is reported as a percentage.
Standard errors are clustered by firm and are reported in parentheses. The symbols ***,**, and * indicate
statistical significance at the 1%, 5%, and 10% levels, respectively.

Ind. Variable: Cum.Funds New round Cum.Funds New Round

Sample: Whole Whole pre-95 post-95 pre-95 post-95
(1) (2) (3) (4) (5) (6)

Disruptive Potential 0.162*** 0.670*** 0.919*** 0.466*** 0.139*** 0.162***
(5.02) (6.82) (5.33) (4.08) (2.59) (4.44)

Tech Breadth -0.323*** 0.017 0.309 -0.299 -0.164 -0.441***
(-5.91) (0.11) (0.87) (-1.59) (-1.50) (-6.65)

Private Similarity 0.060 1.247*** 0.866** 1.265*** 0.037 0.018
(0.92) (6.21) (2.00) (5.39) (0.28) (0.24)

LI Similarity 0.207*** 0.477*** 0.415 0.267 0.128 0.124*
(3.52) (2.76) (1.15) (1.27) (1.12) (1.70)

Foreign Similarity -0.054 -0.025 0.380 -0.198 0.128 -0.088*
(-1.30) (-0.21) (1.34) (-1.42) (1.38) (-1.85)

Year FE Yes Yes Yes Yes Yes Yes
Technology FE Yes Yes Yes Yes Yes Yes
Location FE Yes Yes Yes Yes Yes Yes
Firm Age FE Yes Yes Yes Yes Yes Yes
Firm Cohort FE Yes Yes Yes Yes Yes Yes

Observations 342,146 347,918 114,364 233,550 112,643 229,499
Firms 9,145 9,167 3,972 7,543 3,951 7,483
R2 (%) 32.4 2.2 2.6 1.6 24.7 27.6
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Table IA4: Subsample analysis of startups’ exit: Time
This table repeats the OLS cross-sectional tests in columns (3)-(4) from Table VI on two subsamples.
The tests relate a startup’s ex ante technological traits and its ultimate outcome. We split the sample
based on the observation date. Even numbered columns include observations before January 1, 1996 and
odd numbered columns include observations on or after January 1, 1996. In all models, the definition
of independent variables and interpretation of coefficients are the same as the OLS models in Table VI.
Independent variables are lagged one quarter and standardized for convenience. Note that we standardize
variables within the subsample of the test. LI Similarity and Foreign Similarity are orthogonalized
relative to Private Similarity. For brevity, the control variables are omitted. All variables are winsorized
at the 1/99% level annually. Technology fixed effects are based on the most common NBER-technology
category across a startup’s patents. Location fixed effects are based on the state reported in VentureXpert.
Adjusted R2 is reported as a percentage. Standard errors are clustered by startup and are reported in
parentheses. The symbols ***,**, and * indicate statistical significance at the 1%, 5%, and 10% levels,
respectively.

Exit Type: IPO Acquisition

Observation before/after 1995: Before After Before After
(1) (2) (3) (4)

Disruptive Potential 0.127*** 0.089*** -0.186*** -0.025
(2.73) (4.41) (-6.32) (-0.98)

Tech Breadth 0.109 0.012 -0.286*** -0.179***
(1.31) (0.47) (-3.91) (-4.68)

Private Similarity -0.017 -0.017 -0.164* -0.466***
(-0.16) (-0.56) (-1.76) (-9.18)

LI Similarity -0.001 -0.019 0.017 -0.062
(-0.01) (-0.64) (0.24) (-1.34)

Foreign Similarity 0.062 -0.008 -0.036 0.077***
(0.87) (-0.45) (-0.66) (2.69)

Year FE Yes Yes Yes Yes
Technology FE Yes Yes Yes Yes
Location FE Yes Yes Yes Yes
Firm Age FE Yes Yes Yes Yes
Firm Cohort FE Yes Yes Yes Yes

Observations 112,643 229,499 112,643 229,499
Firms 3,951 7,483 3,951 7,483
R2 (%) 0.3 0.5 0.4 0.6

8


	Introduction
	Technological Characteristics and Exit Decisions
	Data and Methods
	Patent Data and Text
	Technological Disruptive Potential
	Technological Breadth and Similarities
	Linking Patent-Level Traits of VC-backed Startups
	Descriptive Statistics

	Validation of Disruptive Potential
	Citation Patterns and Economic Value
	Unambiguous Breakthrough Inventions
	Perceived Disruption Risk

	Disruptive Potential and Startups' Exits
	Main Results
	Robustness and Dynamics
	Established and New Technology Spaces
	The Product Markets of Exiting Startups

	The Evolution of Disruptive Potential
	Patents' Disruptive Potential in the Last Century
	Disruptive Potential, IPO, and Acquisitions

	Disappearing IPOs and Surging Sell-Outs 
	Prediction Errors for Startups' Exit
	Small and Large IPOs
	The Role of Product Market Stability

	Conclusions
	Bibliography
	Figures
	Tables
	Appendix
	Internet Appendix
	Defining the Entity Type of Patents' Assignees
	Matching patents to VentureXpert
	Additional Results

